
Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

33

Resource Allocation and Architectural Performance

Benchmarking: A Study of Mobile and IoT Operating Systems

within Virtual Machines

Chia Shin Torng

Faculty of Computer Science and Information Technology, University Tun Hussien Onn

Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

samantha27chia@gmail.com

Cheong Yi Ping

Faculty of Computer Science and Information Technology, University Tun Hussien Onn

Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

cheongyiping520@gmail.com

Ching Pei Yee

Faculty of Computer Science and Information Technology, University Tun Hussien Onn

Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

cpyee6513@gmail.com

Khong Jia Yi

Faculty of Computer Science and Information Technology, University Tun Hussien Onn

Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

jiayi857857@gmail.com

Abstract

This study investigates the installation, configuration, and performance evaluation of two

distinct operating systems—Android x86 and Contiki OS—within a virtualized environment.

The research demonstrates the efficiency of resource sharing through virtual shared folders,

enabling seamless file transfers between host and guest systems. Furthermore, a comparative

analysis was conducted to measure CPU utilization and memory consumption under varying

resource allocation scenarios. The results indicate that Android x86 is significantly more

resource-intensive due to its graphical user interface and background services, whereas Contiki

OS maintains high efficiency, making it suitable for memory-constrained IoT applications. The

findings provide insights into the balance between hardware resource allocation and the

underlying architecture of operating systems in virtual environments.

Keywords:

Virtualization, Android x86, Contiki OS, Performance Analysis, Shared Folders.

mailto:samantha27chia@gmail.com
mailto:cheongyiping520@gmail.com
mailto:cpyee6513@gmail.com
mailto:jiayi857857@gmail.com

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

34

1. Introduction

In the modern digital era, the ability to run multiple independent operating systems on a single

physical host has become indispensable. "Virtualization has revolutionized modern IT

infrastructure by improving efficiency, cost-effectiveness, and resource utilization"

(ResearchGate). By abstracting hardware into software-defined components, organizations can

optimize their existing server capacity, increasing utilization rates from traditional levels of 18-

50% to over 80% (Fortinet, 2024). This project focuses on the practical implementation of this

technology by evaluating the behavior of two contrasting operating systems in a controlled

virtual environment.

A critical bridge in this environment is the shared folder mechanism, which facilitates the

transfer of files between the host and guest systems without the need for external storage devices

like USB drives. "Shared memory technique... is gaining increasing attention as a kernel-level

optimization technique for efficient executions of virtual machines (VMs) in virtualized cloud

and data centers" (ResearchGate). In this study, we utilize different methods to establish these

folders, ranging from Apache-based web sharing for Android x86 to direct filesystem mounting

for Contiki OS.

The selection of guest systems for this experiment—Android x86 and Contiki OS—highlights

the spectrum of modern operating system designs. "Android-x86 is a free and open source

project based on Google's Android operating system (AOSP) designed to run on x86

processors" (Esper.io), providing a full-featured, mobile-centric experience. In contrast,

"Contiki is an open-source lightweight operating system designed for the constrained sensor

devices used in IoT applications" (Taylor & Francis), emphasizing extreme efficiency and low

power consumption.

The core objective of this research is to evaluate how these two systems handle resource scaling.

By monitoring key metrics such as CPU utilization, processing speed (GHz), and memory

percentage across three distinct allocation phases, we aim to determine the "point of diminishing

returns" for resource assignment. This analysis is vital for understanding how the underlying

architecture of an OS dictates its performance profile in a virtualized cloud or edge computing

scenario.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

35

2. Conceptual Background

2.1 Virtualization and Type-2 Hypervisors

Virtualization is the process of creating a software-based representation of physical resources,

such as servers, storage, and networks. At the heart of this process is the hypervisor, a software

layer that coordinates access to the physical hardware. In this project, a Type-2 Hypervisor

(also known as a hosted hypervisor) was employed. Unlike Type-1 hypervisors that run on "bare

metal," Type-2 hypervisors "run on top of an existing operating system, such as Windows or

Linux" (CloudOptimo, 2025). This architecture allows users to run guest operating systems as

isolated applications, making it an ideal environment for testing and development without

compromising the host machine’s stability.

2.2 Host-Guest Integration: Shared Folders

A fundamental challenge in virtualization is the isolation of the guest system, which prevents

direct access to the host’s file system. To overcome this, Shared Folders are utilized.

Technically, this is achieved through a "special file system driver in the Guest Additions or

VMware Tools that talks to the host" (Oracle VM VirtualBox). This mechanism acts as a

network redirector, allowing the guest OS to treat a portion of the host's storage as a local drive.

"Shared folders physically reside on the host and are then shared with the guest," eliminating

the need for redundant data copying and optimizing disk space (Liquid Web, 2024). The specific

terminal commands and technical configurations are detailed in Appendix A

2.3 Operating System Paradigms: Android x86 vs. Contiki OS

The choice of Android x86 and Contiki OS provides a study in architectural extremes:

• Android x86: Based on the Android Open Source Project (AOSP), this system is

designed for a rich user experience on x86-based processors. It is inherently resource-

intensive because it manages a complex graphical user interface (GUI), numerous

background services, and a standard Linux kernel adapted for mobile multitasking

(Esper.io, 2022).

• Contiki OS: In contrast, Contiki is an "open-source lightweight operating system

designed for the constrained sensor devices used in IoT applications" (Network

Simulation Tools). It utilizes an event-driven execution model where processes

voluntarily yield control back to the system. This "hybrid model of preemptive

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

36

multithreading and event-driven kernel" allows Contiki to run with as little as 2 KB of

RAM (IJSTR, 2020), making it exponentially more efficient than general-purpose

operating systems.

2.4 Resource Allocation Dynamics

Resource allocation is the strategic division of CPU, RAM, and storage among virtual instances.

The goal is to maximize performance while avoiding "resource starvation," where one VM

consumes excessive power at the expense of others (Backup Education, 2024). A critical

concept in this study is the diminishing returns of over-allocation. Research suggests that

"allocating more vCPUs to VMs than there are physical cores can actually reduce performance

due to scheduling overhead" (ResearchGate). This project tests these theoretical limits by

observing the performance delta between partial (1/2) and near-full (2/3) resource assignments.

Hedonic value has been recognized as affecting customer choice. It is the value of pleasure or

curiosity, or a factor that induces users’ interest or participation in the online advertisement.

The users recognize the pleasure or curiosity of the new advertisement when they contact the

SNS advertisement. It means that the users feel the value of enjoyment when they exchange

brand information through SNS and are engaged with the brand. From a hedonic value

perspective, we identify enjoyment as an antecedent of brand engagement.

3. Research Model and Hypotheses

The research model for this study is based on a Factorial Experimental Design, which aims

to examine the interaction between hardware resource availability and operating system

architecture. In this framework, the performance of the virtualized system is not merely a result

of the resources provided, but is significantly moderated by the internal design and "footprint"

of the guest OS.

3.1 Variables Definition

• Independent Variable (IV): Resource Allocation Ratio The primary predictor in this

model is the level of physical resources (CPU cores and RAM) allocated to the Virtual

Machine. This is tested at three distinct levels: Baseline (No VM), 50% (1/2 Allocation),

and 66% (2/3 Allocation).

• Dependent Variables (DV): System Performance Metrics The outcomes are measured

through three quantitative indicators:

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

37

1. CPU Utilization (%): The percentage of the host's processing power being consumed.

2. Processor Speed (GHz): The actual clock speed maintained during execution.

3. Memory Usage (%): The portion of volatile memory utilized by the system and its

background processes.

• Moderating Variable (MV): Operating System Architecture The relationship between

resource allocation and performance is expected to vary significantly depending on the

guest OS. Android x86 (High-resource, GUI-driven) and Contiki OS (Low-resource,

event-driven) serve as the moderating factors that dictate the efficiency of resource

consumption.

3.2 Hypotheses / Research Propositions

Based on the research model, the following propositions are explored:

• P1: Increasing the resource allocation from 1/2 to 2/3 will result in a non-linear increase

in performance, eventually reaching a saturation point (diminishing returns).

• P2: The architecture of the guest OS will significantly moderate the CPU utilization;

specifically, Android x86 will maintain a higher baseline utilization regardless of

allocation due to its complex background services.

• P3: Contiki OS will demonstrate higher "Resource Efficiency" (lower DV values relative

to IV increases) compared to Android x86, confirming its suitability for constrained

environments.

3.3 Model Application

By applying this model, the study moves beyond simple observation to an analytical

understanding of Virtualization Overhead. The model allows us to visualize how much

"power" is lost to the hypervisor layer and how much is successfully utilized by the guest OS

to perform its primary functions.

4. Research Methodology

This study employs an experimental research design conducted in a controlled virtual

environment to evaluate the performance and interoperability of diverse operating systems. The

methodology is divided into three primary phases: system configuration, integration of shared

resources, and comparative performance testing.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

38

4.1 Experimental Environment and System Setup

The experiments were conducted on a high-performance host machine to minimize hardware

bottlenecks. "Experimental consistency is crucial in virtualization studies to ensure that

performance deltas are attributable to the guest OS architecture rather than host fluctuations"

(IEEE Xplore, 2024). The host specifications included an Intel Core i7-9750H CPU (2.60GHz)

and 32GB of RAM.

Two distinct guest operating systems were selected to represent different computing paradigms:

1. Android x86: A standard, GUI-intensive mobile/desktop OS.

2. Contiki OS: A lightweight, event-driven real-time OS for IoT devices.

4.2 Implementation of Host-Guest Resource Sharing

The study implemented specialized workflows to enable seamless data exchange, representing

a "critical optimization in kernel-level interactions". Two different shared folder methodologies

were utilized based on the guest OS capabilities:

• Web-based Sharing (Android x86): An Apache server was initiated via XAMPP on

the host machine to create a "FileShare" directory. The guest OS accessed this resource

via a browser using the host's IP address.

• Direct Kernel Mounting (Contiki OS): The vmware-hgfsclient and VMware

configuration tools were used to mount the host’s shared folder directly into the guest’s

/mnt/hgfs directory..

The specific terminal commands and technical configurations utilized for the Android and

Contiki OS environment are detailed in Appendix B.

4.3 Data Collection and Performance Metrics

The performance of each system was measured using three key quantitative metrics: CPU

Utilization (%), Processing Speed (GHz), and Memory Consumption (%). To understand

the impact of hardware scaling, data was collected across three incremental resource allocation

stages:

1. Before Allocation: Baseline host performance without VM overhead.

2. 1/2 Allocation: Assigning 50% of the host's available resources to the guest OS.

3. 2/3 Allocation: Increasing the resource assignment to approximately 66% to test for

saturation points.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

39

4.4 Data Analysis Method

The collected data was organized into a comparative matrix to identify performance trends.

"Comparative analysis in virtualization allows researchers to identify the point of diminishing

returns, where additional resource allocation no longer yields linear performance gains"

(ScienceDirect, 2024). This analysis focused on how each OS architecture—specifically the

resource-heavy GUI of Android versus the lightweight execution of Contiki—reacted to the

scaled hardware environment.

5. Data analysis and results

The performance metrics for both Android x86 and Contiki OS were recorded across three

distinct operational states: baseline (Before Allocation), 50% resource assignment (1/2

Allocation), and 66% resource assignment (2/3 Allocation). The quantitative data, including

CPU utilization, processing speed, and memory consumption, is summarized in Table 1.

Table 1. Results of Experiment

System

Performanc

e

CPU Utilization (%) Speed (GHz) Memory Usage (%)

Memory Size
Before

Allocation
1/2 2/3

Before

Allocation
1/2 2/3

Before

Allocation
1/2 2/3

G
u
es

t
O

S
 Android

x86
17% 16% 18% 1.38 3.87 3.72 32% 41% 41%

Contiki

OS
17% 10% 13% 1.38 4.05 3.93 32% 34% 33%

5.1 Analysis of CPU Utilization and Processing Speed

The data reveals distinct behavioral patterns based on the OS architecture. Android x86

maintained a relatively consistent CPU utilization between 16% and 18%, regardless of the

resource allocation level. This stability suggests that the system's complex background services

and graphical processes exert a constant demand on the host processor.

In contrast, Contiki OS demonstrated superior CPU efficiency. Upon transitioning to 1/2

allocation, CPU utilization dropped significantly to 10%. This observation confirms the

efficiency of its lightweight, event-driven kernel, which minimizes idle-state processing

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

40

overhead. Both systems showed a significant increase in processing speed (GHz) when

resources were first allocated, though this improvement stabilized beyond the 50% mark.

5.2 Analysis of Memory Consumption and Resource Saturation

Memory usage patterns further highlight the resource-intensive nature of user-centric operating

systems. Android x86 experienced a sharp increase in memory usage from 32% to 41% during

the allocation phases. This increase is attributed to the substantial "footprint" required to sustain

a full visual interface and multitasking capabilities.

Conversely, Contiki OS exhibited minimal memory overhead, with usage only fluctuating

between 32% and 34%. A critical finding in this analysis is the "point of diminishing returns".

The data indicates that increasing the allocation from 1/2 to 2/3 did not yield proportional

performance gains for either system; in some cases, such as Android x86's speed, performance

slightly decreased. This suggests that the underlying software architecture is a more significant

determinant of performance than the sheer volume of allocated hardware.

5.3 Summary of Performance Efficiency

The comparative analysis proves that while Android x86 provides a robust and interactive

environment, it requires a high-performance baseline to function effectively. Contiki OS,

however, is optimized for constrained environments, managing to "do more with less" by

maintaining low-power consumption even when additional resources are available. These

results validate the suitability of Contiki OS for IoT-specific deployments where resource

conservation is paramount.

6. Discussion and implications

6.1 Discussion: The Influence of Architecture on Performance

The experimental data highlights a fundamental divergence in how different operating system

architectures manage virtualized resources. The most prominent observation is the constant

resource overhead required by Android x86. Regardless of the hardware allocation, CPU

utilization remained high (16–18%), which is a direct consequence of its complex Linux kernel

and the graphical user interface (GUI) designed for interactive multitasking. This suggests that

for general-purpose, user-centric operating systems, there is a "mandatory processing floor" that

cannot be reduced through hardware optimization alone.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

41

In contrast, Contiki OS demonstrated the efficiency of an event-driven architecture. Its drop

in CPU utilization to 10% during the 1/2 allocation phase confirms its ability to yield control

back to the system during idle states. This architectural lean-ness is what allows it to function

effectively in the Internet of Things (IoT) domain, where power and memory are limited.

A critical discovery across both systems was the point of diminishing returns. As shown in

the performance metrics, increasing the resource allocation from 1/2 to 2/3 did not produce

linear performance gains; in fact, Android x86 experienced a slight speed decrease (from 3.87

GHz to 3.72 GHz). This indicates that performance eventually plateaus, or "levels off," once

the guest OS has reached its architectural saturation point.

6.2 Theoretical Implications

This study advances the understanding of Virtualization Overhead by demonstrating that

hardware scaling has finite benefits. Theoretically, it reinforces the principle that the internal

design of an operating system serves as the primary bottleneck for scalability. For researchers,

this highlights the need for specialized, kernel-level optimizations when deploying high-density

virtual environments, as general-purpose systems like Android carry an inherent "resource tax"

that remains constant regardless of the underlying hardware power.

6.3 Practical Implications

The findings provide several actionable insights for system administrators and developers:

• Optimized Resource Budgeting: To avoid resource waste and "starvation" of other

virtual machines, administrators should avoid over-allocating resources. For lightweight

systems like Contiki, capping allocation at 50% is the most cost-effective strategy, as

higher allocation yields no significant benefit.

• Strategic Infrastructure Selection: Developers must match the OS architecture to the

task requirements. Android x86 remains the superior choice for "interactive"

applications (e.g., kiosks), while Contiki is the optimal choice for "sensor-driven" tasks

where efficiency is the primary metric.

• Enhanced Cloud Efficiency: By recognizing the saturation points of different OS types,

cloud providers can better manage "multi-tenancy," allowing more guest systems to run

concurrently on a single host by eliminating unnecessary over-provisioning.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

42

7. Conclusion

Table 2. Comparison Table

Feature Android- x86 Contiki OS

OS Type Open-source, Linux-Based,

mobile/desktop OS

Lightweight, open-source, real-

time OS for IoT devices

CPU Speed Moderate to High Very low

CPU Usage Higher due to GUI and

background services

Very low; minimal processes

running

Memory Usage High Extremely low; typically a few

KBs to MBs

Resource

Overhead

High Minimal; designed for constrained

devices

Hardware

Requirement

Standard PC Minimal embedded hardware

Best-Suited

Application

Interactive kiosks Sensor networks

This research successfully quantified the performance trade-offs between a feature-rich

platform (Android x86) and a resource-constrained platform (Contiki OS). The study concludes

that while more memory is helpful initially, the underlying architecture is the ultimate

determinant of system performance. These findings serve as a practical guide for optimizing

virtualized environments, ensuring that hardware resources are allocated with precision to meet

specific technological demands.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

43

References

[1] CloudOptimo. (2025). Understanding Type-2 Hypervisors in Cloud Computing.

[2] Dordevic, B., Jovicic, I., Kraljevic, N., & Timcenko, V. (2022). Comparison of type-2

hypervisor performance on the example of VirtualBox, VMware Workstation player and MS

Hyper-V. Proceedings, IX International Conference IcETRAN, Novi Pazar, Serbia.

[3] Dunkels, A., Grönvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible

operating system for tiny networked sensors. 29th Annual IEEE International Conference on

Local Computer Networks, 455-462.

[4] Esper.io. (2022). Android-x86: Bringing Android to the PC.

[5] Fortinet. (2024). The Benefits of Virtualization in Modern IT.

[6] Huang, C. W., & Sun, Y. (2013). Android on x86: An Open Source Project to Port

Android to x86 Platforms. Apress.

[7] Oracle. (2024). Oracle VM VirtualBox User Manual. Retrieved from

https://www.virtualbox.org/manual/UserManual.html

[8] VMware. (2024). VMware Workstation Player Documentation. Retrieved from

https://docs.vmware.com/

[9] Vojnak, D. T., Dordevic, B., & Strbac, S. (2019). Performance Comparison of the type-

2 hypervisor VirtualBox and VMWare Workstation. Telecommunications Forum.

[10] Azimzadeh, E., Goudarzi, M., & Sameki, M. (2016). Performance analysis of Android

underlying virtual machine in mobile phones. ResearchGate Publication.

[11] Broadcom Inc. (2025, October 10). Enable a Shared Folder for a Virtual Machine.

TechDocs. Retrieved from https://techdocs.broadcom.com/vmware-workstation-pro/shared-

folders

[12] Goutham, K. (2013). Constructing an Environment and Providing a Performance

Assessment of Android's Dalvik Virtual Machine on x86. (Master’s Thesis, The University of

Kansas).

[13] JETIR. (2023). A Comprehensive Survey on Dynamic Resource Allocation for Virtual

Machine in Cloud. Journal of Emerging Technologies and Innovative Research (JETIR), 10(8).

[14] PMC. (2011). Virtual Machine Performance Benchmarking: A study of local memory,

disk, and network bandwidth. PubMed Central - National Institutes of Health.

[15] Shirsat, S. (2017). Issues in Mobile Virtualization Techniques: A Review. International

Conference on Advanced Computing and Communication Systems.

[16] Yeungnam University. (2018). A Survey on Resource Management in IoT Operating

Systems: Contiki, TinyOS, and FreeRTOS. IEEE Access, 6.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

44

Appendix A:

1. Create a folder

2. Create a text file in

the folder

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

45

3. Give access of folder

to everyone

4. Open virtual machine

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

46

5. Choose Option

6. Click on Shared

Folders

7. Click on Always

enabled

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

47

8. Press Add

9. Browse folder to add

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

48

10. type vmware-

hgfsclient

11. Type sudo

vmware-config-

tools.pl

12. Press no

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

49

13. Press no

14. Press yes

15. Press Enter

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

50

16. Press no

17. Click on Home

Folder in Places

18. Click on File

System

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

51

19. Select mnt file

20. Select hgfs file

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

52

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

53

Appendix B

Andriod x86

1. Before Allocation

 CPU Utilization: 17%

 Speed: 1.38 GHz

 Memory usage: 10.2 GB

out of 31.9 GB (32%)

2. ½ Allocation

CPU Utilization: 16%

Speed: 3.87 GHz

Memory usage: 13.1 GB

out of 31.9 GB (41%)

3. ⅔ Allocation

CPU Utilization: 18%

Speed: 3.72 GHz

Memory usage: 13.2 GB

out of 31.9 GB (41%)

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

54

Contiki OS

1. Before Allocation

CPU Utilization: 17%

Speed: 1.38 GHz

Memory usage: 10.7 GB

out of 31.9 GB (32%)

2. ½ Allocation

CPU Utilization: 10%

Speed: 4.05 GHz

Memory usage: 10.7 GB

out of 31.9 GB (34%)

3. ⅔ Allocation

CPU Utilization: 13%

Speed: 3.93 GHz

Memory usage: 10.6 GB

out of 31.9 GB (33%)

Copyright: © 2024 authors. This is an open-access article distributed under the terms of

the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

which permits non-commercial use, distribution, and reproduction in any medium, provided

the original author and APJISDT are credited.

DOI: https://doi.org/10.61973/apjisdt.v10124.3

