Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

Resource Allocation and Architectural Performance
Benchmarking: A Study of Mobile and IoT Operating Systems
within Virtual Machines

Chia Shin Torng

Faculty of Computer Science and Information Technology, University Tun Hussien Onn
Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

samantha27chia@gmail.com

Cheong Yi Ping

Faculty of Computer Science and Information Technology, University Tun Hussien Onn
Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

cheongyiping520@gmail.com

Ching Pei Yee

Faculty of Computer Science and Information Technology, University Tun Hussien Onn
Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

cpyee6513@gmail.com

Khong Jia Yi

Faculty of Computer Science and Information Technology, University Tun Hussien Onn
Malaysia, Parit Raja, Johor Darul Takzim, Malaysia

j1ay1857857@gmail.com

Abstract

This study investigates the installation, configuration, and performance evaluation of two
distinct operating systems—Android x86 and Contiki OS—within a virtualized environment.
The research demonstrates the efficiency of resource sharing through virtual shared folders,
enabling seamless file transfers between host and guest systems. Furthermore, a comparative
analysis was conducted to measure CPU utilization and memory consumption under varying
resource allocation scenarios. The results indicate that Android x86 is significantly more
resource-intensive due to its graphical user interface and background services, whereas Contiki
OS maintains high efficiency, making it suitable for memory-constrained IoT applications. The
findings provide insights into the balance between hardware resource allocation and the

underlying architecture of operating systems in virtual environments.

Keywords:
Virtualization, Android x86, Contiki OS, Performance Analysis, Shared Folders.

33

mailto:samantha27chia@gmail.com
mailto:cheongyiping520@gmail.com
mailto:cpyee6513@gmail.com
mailto:jiayi857857@gmail.com

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

1. Introduction

In the modern digital era, the ability to run multiple independent operating systems on a single
physical host has become indispensable. "Virtualization has revolutionized modern IT
infrastructure by improving efficiency, cost-effectiveness, and resource utilization"
(ResearchGate). By abstracting hardware into software-defined components, organizations can
optimize their existing server capacity, increasing utilization rates from traditional levels of 18-
50% to over 80% (Fortinet, 2024). This project focuses on the practical implementation of this
technology by evaluating the behavior of two contrasting operating systems in a controlled
virtual environment.

A critical bridge in this environment is the shared folder mechanism, which facilitates the
transfer of files between the host and guest systems without the need for external storage devices
like USB drives. "Shared memory technique... is gaining increasing attention as a kernel-level
optimization technique for efficient executions of virtual machines (VMs) in virtualized cloud
and data centers" (ResearchGate). In this study, we utilize different methods to establish these
folders, ranging from Apache-based web sharing for Android x86 to direct filesystem mounting
for Contiki OS.

The selection of guest systems for this experiment—Android x86 and Contiki OS—highlights
the spectrum of modern operating system designs. "Android-x86 is a free and open source
project based on Google's Android operating system (AOSP) designed to run on x86
processors" (Esper.io), providing a full-featured, mobile-centric experience. In contrast,
"Contiki is an open-source lightweight operating system designed for the constrained sensor
devices used in 10T applications" (Taylor & Francis), emphasizing extreme efficiency and low
power consumption.

The core objective of this research is to evaluate how these two systems handle resource scaling.
By monitoring key metrics such as CPU utilization, processing speed (GHz), and memory
percentage across three distinct allocation phases, we aim to determine the "point of diminishing
returns" for resource assignment. This analysis is vital for understanding how the underlying
architecture of an OS dictates its performance profile in a virtualized cloud or edge computing

scenario.

34

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

2. Conceptual Background

2.1 Virtualization and Type-2 Hypervisors

Virtualization is the process of creating a software-based representation of physical resources,
such as servers, storage, and networks. At the heart of this process is the hypervisor, a software
layer that coordinates access to the physical hardware. In this project, a Type-2 Hypervisor
(also known as a hosted hypervisor) was employed. Unlike Type-1 hypervisors that run on "bare
metal," Type-2 hypervisors "run on top of an existing operating system, such as Windows or
Linux" (CloudOptimo, 2025). This architecture allows users to run guest operating systems as
isolated applications, making it an ideal environment for testing and development without

compromising the host machine’s stability.

2.2 Host-Guest Integration: Shared Folders

A fundamental challenge in virtualization is the isolation of the guest system, which prevents
direct access to the host’s file system. To overcome this, Shared Folders are utilized.
Technically, this is achieved through a "special file system driver in the Guest Additions or
VMware Tools that talks to the host" (Oracle VM VirtualBox). This mechanism acts as a
network redirector, allowing the guest OS to treat a portion of the host's storage as a local drive.
"Shared folders physically reside on the host and are then shared with the guest," eliminating
the need for redundant data copying and optimizing disk space (Liquid Web, 2024). The specific

terminal commands and technical configurations are detailed in Appendix A

2.3 Operating System Paradigms: Android x86 vs. Contiki OS

The choice of Android x86 and Contiki OS provides a study in architectural extremes:

. Android x86: Based on the Android Open Source Project (AOSP), this system is
designed for a rich user experience on x86-based processors. It is inherently resource-
intensive because it manages a complex graphical user interface (GUI), numerous
background services, and a standard Linux kernel adapted for mobile multitasking
(Esper.io, 2022).

. Contiki OS: In contrast, Contiki is an "open-source lightweight operating system
designed for the constrained sensor devices used in IoT applications" (Network
Simulation Tools). It utilizes an event-driven execution model where processes
voluntarily yield control back to the system. This "hybrid model of preemptive

35

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article
multithreading and event-driven kernel" allows Contiki to run with as little as 2 KB of
RAM (IJSTR, 2020), making it exponentially more efficient than general-purpose

operating systems.

2.4 Resource Allocation Dynamics

Resource allocation is the strategic division of CPU, RAM, and storage among virtual instances.
The goal is to maximize performance while avoiding "resource starvation," where one VM
consumes excessive power at the expense of others (Backup Education, 2024). A critical
concept in this study is the diminishing returns of over-allocation. Research suggests that
"allocating more vCPUs to VMs than there are physical cores can actually reduce performance
due to scheduling overhead" (ResearchGate). This project tests these theoretical limits by
observing the performance delta between partial (1/2) and near-full (2/3) resource assignments.
Hedonic value has been recognized as affecting customer choice. It is the value of pleasure or
curiosity, or a factor that induces users’ interest or participation in the online advertisement.
The users recognize the pleasure or curiosity of the new advertisement when they contact the
SNS advertisement. It means that the users feel the value of enjoyment when they exchange
brand information through SNS and are engaged with the brand. From a hedonic value

perspective, we identify enjoyment as an antecedent of brand engagement.

3. Research Model and Hypotheses

The research model for this study is based on a Factorial Experimental Design, which aims
to examine the interaction between hardware resource availability and operating system
architecture. In this framework, the performance of the virtualized system is not merely a result
of the resources provided, but is significantly moderated by the internal design and "footprint"

of the guest OS.

3.1 Variables Definition

. Independent Variable (IV): Resource Allocation Ratio The primary predictor in this
model is the level of physical resources (CPU cores and RAM) allocated to the Virtual
Machine. This is tested at three distinct levels: Baseline (No VM), 50% (1/2 Allocation),
and 66% (2/3 Allocation).

. Dependent Variables (DV): System Performance Metrics The outcomes are measured

through three quantitative indicators:

36

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article
1. CPU Utilization (%): The percentage of the host's processing power being consumed.
2. Processor Speed (GHz): The actual clock speed maintained during execution.
3. Memory Usage (%): The portion of volatile memory utilized by the system and its
background processes.

° Moderating Variable (MV): Operating System Architecture The relationship between
resource allocation and performance is expected to vary significantly depending on the
guest OS. Android x86 (High-resource, GUI-driven) and Contiki OS (Low-resource,
event-driven) serve as the moderating factors that dictate the efficiency of resource

consumption.

3.2 Hypotheses / Research Propositions

Based on the research model, the following propositions are explored:

. P1: Increasing the resource allocation from 1/2 to 2/3 will result in a non-linear increase
in performance, eventually reaching a saturation point (diminishing returns).

. P2: The architecture of the guest OS will significantly moderate the CPU utilization;
specifically, Android x86 will maintain a higher baseline utilization regardless of
allocation due to its complex background services.

. P3: Contiki OS will demonstrate higher "Resource Efficiency" (lower DV values relative
to IV increases) compared to Android x86, confirming its suitability for constrained

environments.

3.3 Model Application

By applying this model, the study moves beyond simple observation to an analytical
understanding of Virtualization Overhead. The model allows us to visualize how much
"power" is lost to the hypervisor layer and how much is successfully utilized by the guest OS

to perform its primary functions.
4. Research Methodology

This study employs an experimental research design conducted in a controlled virtual
environment to evaluate the performance and interoperability of diverse operating systems. The
methodology is divided into three primary phases: system configuration, integration of shared

resources, and comparative performance testing.

37

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

4.1 Experimental Environment and System Setup

The experiments were conducted on a high-performance host machine to minimize hardware

bottlenecks. "Experimental consistency is crucial in virtualization studies to ensure that

performance deltas are attributable to the guest OS architecture rather than host fluctuations"

(IEEE Xplore, 2024). The host specifications included an Intel Core i7-9750H CPU (2.60GHz)
and 32GB of RAM.

Two distinct guest operating systems were selected to represent different computing paradigms:

l. Android x86: A standard, GUI-intensive mobile/desktop OS.

2. Contiki OS: A lightweight, event-driven real-time OS for loT devices.

4.2 Implementation of Host-Guest Resource Sharing

The study implemented specialized workflows to enable seamless data exchange, representing
a "critical optimization in kernel-level interactions". Two different shared folder methodologies
were utilized based on the guest OS capabilities:

. Web-based Sharing (Android x86): An Apache server was initiated via XAMPP on
the host machine to create a "FileShare" directory. The guest OS accessed this resource
via a browser using the host's IP address.

. Direct Kernel Mounting (Contiki OS): The vmware-hgfsclient and VMware
configuration tools were used to mount the host’s shared folder directly into the guest’s
/mnt/hgfs directory..

The specific terminal commands and technical configurations utilized for the Android and

Contiki OS environment are detailed in Appendix B.

4.3 Data Collection and Performance Metrics

The performance of each system was measured using three key quantitative metrics: CPU
Utilization (%), Processing Speed (GHz), and Memory Consumption (%). To understand

the impact of hardware scaling, data was collected across three incremental resource allocation

stages:

1. Before Allocation: Baseline host performance without VM overhead.

2. 1/2 Allocation: Assigning 50% of the host's available resources to the guest OS.

3. 2/3 Allocation: Increasing the resource assignment to approximately 66% to test for

saturation points.

38

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

4.4 Data Analysis Method

The collected data was organized into a comparative matrix to identify performance trends.
"Comparative analysis in virtualization allows researchers to identify the point of diminishing
returns, where additional resource allocation no longer yields linear performance gains"
(ScienceDirect, 2024). This analysis focused on how each OS architecture—specifically the
resource-heavy GUI of Android versus the lightweight execution of Contiki—reacted to the

scaled hardware environment.

5. Data analysis and results

The performance metrics for both Android x86 and Contiki OS were recorded across three
distinct operational states: baseline (Before Allocation), 50% resource assignment (1/2
Allocation), and 66% resource assignment (2/3 Allocation). The quantitative data, including

CPU utilization, processing speed, and memory consumption, is summarized in Table 1.

Table 1. Results of Experiment

System
Performanc | CPU Utilization (%) Speed (GHz) Memory Usage (%)
e
. Before Before Before
Memory Size Allocation 2|23 Allocation 121273 Allocation 12123
o | AP g L rees | 18% | 138 [3.87[372| 32% | 41% |41%
e) x86
% Contiki
) 0S 17% 10% | 13% 1.38 4.0513.93 32% 34% [33%

5.1 Analysis of CPU Utilization and Processing Speed

The data reveals distinct behavioral patterns based on the OS architecture. Android x86
maintained a relatively consistent CPU utilization between 16% and 18%, regardless of the
resource allocation level. This stability suggests that the system's complex background services
and graphical processes exert a constant demand on the host processor.

In contrast, Contiki OS demonstrated superior CPU efficiency. Upon transitioning to 1/2
allocation, CPU utilization dropped significantly to 10%. This observation confirms the

efficiency of its lightweight, event-driven kernel, which minimizes idle-state processing

39

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article
overhead. Both systems showed a significant increase in processing speed (GHz) when

resources were first allocated, though this improvement stabilized beyond the 50% mark.

5.2 Analysis of Memory Consumption and Resource Saturation

Memory usage patterns further highlight the resource-intensive nature of user-centric operating
systems. Android x86 experienced a sharp increase in memory usage from 32% to 41% during
the allocation phases. This increase is attributed to the substantial "footprint" required to sustain
a full visual interface and multitasking capabilities.

Conversely, Contiki OS exhibited minimal memory overhead, with usage only fluctuating
between 32% and 34%. A critical finding in this analysis is the "point of diminishing returns".
The data indicates that increasing the allocation from 1/2 to 2/3 did not yield proportional
performance gains for either system; in some cases, such as Android x86's speed, performance
slightly decreased. This suggests that the underlying software architecture is a more significant

determinant of performance than the sheer volume of allocated hardware.

5.3 Summary of Performance Efficiency

The comparative analysis proves that while Android x86 provides a robust and interactive
environment, it requires a high-performance baseline to function effectively. Contiki OS,
however, is optimized for constrained environments, managing to "do more with less" by
maintaining low-power consumption even when additional resources are available. These
results validate the suitability of Contiki OS for loT-specific deployments where resource

conservation is paramount.

6. Discussion and implications

6.1 Discussion: The Influence of Architecture on Performance

The experimental data highlights a fundamental divergence in how different operating system
architectures manage virtualized resources. The most prominent observation is the constant
resource overhead required by Android x86. Regardless of the hardware allocation, CPU
utilization remained high (16-18%), which is a direct consequence of its complex Linux kernel
and the graphical user interface (GUI) designed for interactive multitasking. This suggests that
for general-purpose, user-centric operating systems, there is a "mandatory processing floor" that

cannot be reduced through hardware optimization alone.

40

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

In contrast, Contiki OS demonstrated the efficiency of an event-driven architecture. Its drop
in CPU utilization to 10% during the 1/2 allocation phase confirms its ability to yield control
back to the system during idle states. This architectural lean-ness is what allows it to function
effectively in the Internet of Things (IoT) domain, where power and memory are limited.

A critical discovery across both systems was the point of diminishing returns. As shown in
the performance metrics, increasing the resource allocation from 1/2 to 2/3 did not produce
linear performance gains; in fact, Android x86 experienced a slight speed decrease (from 3.87
GHz to 3.72 GHz). This indicates that performance eventually plateaus, or "levels off," once

the guest OS has reached its architectural saturation point.

6.2 Theoretical Implications

This study advances the understanding of Virtualization Overhead by demonstrating that
hardware scaling has finite benefits. Theoretically, it reinforces the principle that the internal
design of an operating system serves as the primary bottleneck for scalability. For researchers,
this highlights the need for specialized, kernel-level optimizations when deploying high-density
virtual environments, as general-purpose systems like Android carry an inherent "resource tax"

that remains constant regardless of the underlying hardware power.

6.3 Practical Implications

The findings provide several actionable insights for system administrators and developers:

. Optimized Resource Budgeting: To avoid resource waste and "starvation" of other
virtual machines, administrators should avoid over-allocating resources. For lightweight
systems like Contiki, capping allocation at 50% is the most cost-effective strategy, as
higher allocation yields no significant benefit.

. Strategic Infrastructure Selection: Developers must match the OS architecture to the
task requirements. Android x86 remains the superior choice for '"interactive"
applications (e.g., kiosks), while Contiki is the optimal choice for "sensor-driven" tasks
where efficiency is the primary metric.

. Enhanced Cloud Efficiency: By recognizing the saturation points of different OS types,
cloud providers can better manage "multi-tenancy," allowing more guest systems to run

concurrently on a single host by eliminating unnecessary over-provisioning.

41

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

7. Conclusion

Table 2. Comparison Table

Feature Android- x86 Contiki OS

OS Type Open-source, Linux-Based, Lightweight, open-source, real-
mobile/desktop OS time OS for IoT devices

CPU Speed Moderate to High Very low

CPU Usage Higher due to GUI and Very low; minimal processes
background services running

Memory Usage High Extremely low; typically a few

KBs to MBs

Resource High Minimal; designed for constrained

Overhead devices

Hardware Standard PC Minimal embedded hardware

Requirement

Best-Suited Interactive kiosks Sensor networks

Application

This research successfully quantified the performance trade-offs between a feature-rich
platform (Android x86) and a resource-constrained platform (Contiki OS). The study concludes
that while more memory is helpful initially, the underlying architecture is the ultimate
determinant of system performance. These findings serve as a practical guide for optimizing
virtualized environments, ensuring that hardware resources are allocated with precision to meet

specific technological demands.

42

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

References

[1] CloudOptimo. (2025). Understanding Type-2 Hypervisors in Cloud Computing.

[2] Dordevic, B., Jovicic, 1., Kraljevic, N., & Timcenko, V. (2022). Comparison of type-2
hypervisor performance on the example of VirtualBox, VMware Workstation player and MS
Hyper-V. Proceedings, IX International Conference IcETRAN, Novi Pazar, Serbia.

[3] Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki - a lightweight and flexible
operating system for tiny networked sensors. 29th Annual IEEE International Conference on
Local Computer Networks, 455-462.

[4] Esper.io. (2022). Android-x86: Bringing Android to the PC.
[5] Fortinet. (2024). The Benefits of Virtualization in Modern IT.

[6] Huang, C. W., & Sun, Y. (2013). Android on x86: An Open Source Project to Port
Android to x86 Platforms. Apress.

[7] Oracle. (2024). Oracle VM VirtualBox User Manual. Retrieved from
https://www.virtualbox.org/manual/UserManual.html

[8] VMware. (2024). VMware Workstation Player Documentation. Retrieved from
https://docs.vmware.com/

[9] Vojnak, D. T., Dordevic, B., & Strbac, S. (2019). Performance Comparison of the type-
2 hypervisor VirtualBox and VMWare Workstation. Telecommunications Forum.

[10] Azimzadeh, E., Goudarzi, M., & Sameki, M. (2016). Performance analysis of Android
underlying virtual machine in mobile phones. ResearchGate Publication.

[11] Broadcom Inc. (2025, October 10). Enable a Shared Folder for a Virtual Machine.
TechDocs. Retrieved from https://techdocs.broadcom.com/vmware-workstation-pro/shared-
folders

[12] Goutham, K. (2013). Constructing an Environment and Providing a Performance
Assessment of Android's Dalvik Virtual Machine on x86. (Master’s Thesis, The University of
Kansas).

[13] JETIR. (2023). A Comprehensive Survey on Dynamic Resource Allocation for Virtual
Machine in Cloud. Journal of Emerging Technologies and Innovative Research (JETIR), 10(8).

[14] PMC. (2011). Virtual Machine Performance Benchmarking: A study of local memory,
disk, and network bandwidth. PubMed Central - National Institutes of Health.

[15] Shirsat, S. (2017). Issues in Mobile Virtualization Techniques: A Review. International
Conference on Advanced Computing and Communication Systems.

[16] Yeungnam University. (2018). A Survey on Resource Management in loT Operating
Systems: Contiki, TinyOS, and FreeRTOS. IEEE Access, 6.

43

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Appendix A:

1. Create a folder

2. Create a text file in

the folder

44

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

3. Give access of folder

to everyone

4. Open virtual machine

B loApp

Filg, Edit

Hello from host machine

contiki.txt

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

5. Choose Option

Virtual Machine Settngs

e o,

=
< e

[

Sk At

(Memory miapong may
o beyond i e

s

B Racommmandud mecery

6. Click on Shared
Folders

Virtus Machine Settngs
ot Optens

Senegs

7. Click on Always
enabled

Virtus Machine Settngs

Hartwe Optins

46

Asia Pacific Journal of Information System and Digital Transformation
2024 , Vol 1 No 01, Research Article

8. Press Add

9. Browse folder to add

Summary Foiser shavg
Itz [Shares fokdars xpose yor Fes o pograms in .
china. The my g you compsee and
Shared folders € o
Desties
Teo spec et

Add Shared Felder Waard
o the Shared

Wt o you W 0l hs shared ke
o pan
R OraD e

share

T spec o

Add Shared Felder Wizard
‘Specty Shared older Attributes.
pechy the s of e haces Fder
Aol st
8 Eratie ths share

Rty

47

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

@ Applications Places BB en B § T3 1)) 657PM R InstantContiki 1%

10. type vmware-

user@instant-contiki
hngClient File Edit View Search Terminal Help

user@instant-contiki:~$ vmware-hg

=1

& | @& user@instant-contiki:~ |

BB en B § T4) 657PM R Instant Contiki i

® Applications Places

11. Type sudo

L] user@instant-contiki: ~

mware Conﬁ File Edit View Search Terminal Help
v W g user@instant-contiki:~$ vmware-hgfsclient
are
user@instant-contiki:~$ sudo vmware-config-tools.pl

tools.pl

© i user@instantcontiki:~ |

B3 en

user@instant-contikk
File Edit View Search Terminal Help
ser@instant-contiki:~$ vmware-hgfsclient
hare
user@instant-contiki sudo vmware-config-tool

[sudo] password for user:
Initializing...

{® Applications Places B 3 73) 658PM R InstantContiki %

12. Press no

Making sure services for VMware Tools are stopped.

W [EXPERTMENTAL] The VMware FileSystem Sync Driver (vmsync) is a new feature that
creates backups of virtual machines. Please refer to the VMware Knowledge Base
for more details on this capability. Do you wish to enable this feature?

(nol nol

L @& user@instantcontiki: ~ =

48

Asia Pacific Journal of Information System and Digital Transformation

2024, Vol 1 No 01, Research Article

® Applications Places B3 en B 3 13 4) 658PM R Instant Contiki %

13. Press no

File Edit View Search Terminal Help
user@instant-contiki:~$ vmware-hgfsclient

share

user@instant-contik udo vmware-config-tools.pl
[sudo] password for user:

Initializing...

Making sure services for VMware Tools are stopped.

W [EXPERIMENTAL] The VMware FileSystem Sync Driver (vmsync) s a new feature that
creates backups of virtual machines. Please refer to the VMware Knowledge Base
for more details on this capability. Do you wish to enable this feature?

v '@ user@instant-contiki:~ | [|

@ Applications Places Elen M@ 3 1 @)

user@instant-contik

File Edit View Search Terminal Help

MODULEBUILDDIR= pt build
make[1]: Entering directory ' /tmp/vmware-root/modules/vsock-onl

postbuild' is up to date.
ake[1]: Leaving directory ‘/tmp/vmware-root/modules/vsock-on

f vsock.ko ./../vsock.o
Leaving directory '/tmp/vmware-root/modules/vsock-only

6:59PM R Instant Contiki {3

14. Press yes

The module vmxnet3 has already been installed on this system by another
installer or package and will not be modified by this installer. Use the flag
clobber-kernel-modules=vmxnet3 to override.

Wirhe module pvscst has already been installed on this system by another
tnstaller or package and will not be modified by this installer. Use the flag
-clobber-kernel-modules=pvscsi to override.

The module vmmemctl has already been installed on this syste another
installer or package and will not be modified by this installer. u: the flag
clobber-kernel-modules=vmmenctl to override.

The VMware Host-Guest Filesystem allows for shared folders between the host 0S
and the guest 05 in a Fusion or Workstation virtual environment. Do you wish
to enable this feature? [yes] yes

= e ki :l

® Applications Places en B 3 t3) 6:59PM R Instant Contiki

ol

15. Press Enter

™ user@instant-contiki: ~
File Edit View Search Terminal Help

gument is of type ‘struct <anonymous>’
/tmp/vmware-root/modules/vmxnet-only/vmxnet. 4:26: error: incompatible type
for argument 2 of ‘pci_map_page’
include/asm-generic/pci-dma-compat.h:43:1: note: expected
gument is of type ‘struct <anonymous>’
/tmp/vmware-root/modules/vmxnet-only/vmxnet.c: In function ‘vmxnet_rx_frags
/tmp/vmware-root/modules/vnxnet-only/vmxnet.c:2599 error: incompatible types
igning to type ‘struct <anonymous from type ‘struct page *’
* [/tmp/vmware-root/modules/vmxnet-only/vmxnet.o] Error 1
*** [_module_/tmp/vmware-root/modules/vmxnet-only] Error
Leaving directory ‘/usr/src/linux-headers-3
*** [vmxnet.ko] Error 2
Leaving directory "/tmp/vmware-root/modules/vmxnet-only’

struct page *’ but ar

The fast network device driver (vmxnet module) is used only for our fast
networking interface. The rest of the software provided by VMware Tools is
designed to work independently of this feature.

If you wish to have the fast network driver enabled, you can install the driver
by running vmware-config-tools.pl again after making sure that gcc, binutil
make and the kernel sources for your running kernel are installed on your
machine. These packages are available on your distribution's installation CD.

[Press Enter key to continue]

« 'a user@instantcontiki: ~ [|

49

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

6:59PM 2 Instant Contiki 3

16. Press no

13 1)

® Avplications Places B3 en M 3

user@instant-contil
File Edit View Search Terminal Help

LD [M]
Buildin

MODULEBUILDDIR= postbuild

ntering dir ry " /tmp/vm

[1]: ‘postbuild' is up to date.

make[1]: Leaving directory '/tmp/vmware-root/modules/vmblock-only
cp -f vmblock.ko)

vmblock-only

w
GELHEE ules/vmblock-only'

IMENTAL]
»matic kernel modules enables automatic building and install
nel modules at boot they are not already p electin
ture

ou will be enabling t P imenta
feature by re-running vmwa nfig !
kernel modul

Would you like enable VMware automatic

[no] r

7:00PM R Instant Contiki £}

17. Click on Home

Folder in Places

@ Applications Places ERen M 3 1 W)

I Desktop

' i Documents

Terminal ¥ LIS

sl Videos

1 Downloads

B computer

Wireshark (5= (ST RNV

"D Network

Connect to Server...

]
18 l k Fl @ Applications Places EQ en B $ t3 @) 7:00PM 2 Instant Contiki
. Click on File S
File Edit View Go Bookmarks Help
System e +aome Q search
— Floppy Drive
Computer
s Home CodeSourcery contiki contiki-2.7 contikiprojects
& Desktop
i\ Documents [- "] ‘
i Bobiads Desktop Documents Downloads Music
& Music
I Pictures S ‘
s wil 2 .
Pictures Public Templates Videos
wireshark

sl Browse Net...

= S & opening user A | | |

50

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

19.

Select mnt file

@® Applications Places
8=/
File Edit View Go Bookmarks Help
Devices — home s Home
— Floppy Drive
Computer
ai Home bin
& Desktop
i Documents
& Downloads
& Music
iE Pictures =
8 Videos ﬁ
@ Trash [
Network E
@ Browse Net....

etc

root

srv

var

EBen M 3 73 ¢) 7:00PM 2 Instant Contiki &t

& v Q search
boot dev
—d o
home lost+found

20.

Select hgfs file

@ Applications Places
® = mnt
File Edit View Go Bookmarks Help
Devices = 7.:‘
— Floppy Drive
Computer “
iai Home [For]
& Desktop
i) Documents
i Downloads
& Music
(W Pictures
@ Videos
— File System
= Trash
Network
iisl Browse Net...

= [

B en B 3 t3 @) 7:00PM R Instant Contiki ¥

& 0 Q search

| @ Applications Places

B3 en M 3 f3 4) 7:01PM 2 Instant Contiki $i#

® - = hgfs

File Edit View Go Bookmarks Help
Devices = mnt [hgfs
— Floppy Drive

Computer n

& Home [Share]

&4 Desktop

4 Documents

&i Downloads

& Music

& Pictures

B Videos

— File System

2 Trash
Network

i Browse Net...

& < Q search

51

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

@) Applications Places Elen B 3 fy 1)
@ o share
File Edit View Go Bookmarks Help
Devices = mnt hgfs share
— Floppy Drive
Computer [}
ai Home
& Desktop
i) Documents
&3 Downloads
& Music
N Pictures
@ videos
- File System
= Trash
Network
i Browse Net....

contiki.txt

OApplncanons Places Eden M 3 1)
x @® - 0 contikitxt (/mnt/hgfs/share) - gedit
File EtFile Edit View Search Tools Documents Help

Devii . b Open + Dl save @& iy Undo b 4

=F [contiki.txt %
Comijiel1o from host machine

at

Er

ny

ac

an

mF

a\

2

81
Netw

“e 1

7:01PM & Instant Contiki i}

L Q search

7:01PM R Instant Contiki {i

Qx Q search

Loading file ‘/mnt/hgfs/share/co... PlainText » Tab width: 8 + Ln1,Col1 INS

5w share 7+ contikitxt Umnt/hafs..

“contiki.txt" selected (23 bytes)

52

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Appendix B

Andriod x86

1. Before Allocation
CPU Utilization: 17%
Speed: 1.38 GHz
Memory usage: 10.2 GB
out of 31.9 GB (32%)

7% 138G

373 6062 1748

001135

2. % Allocation
CPU Utilization: 16%
Speed: 3.87 GHz
Memory usage: 13.1 GB ;
out of 31.9 GB (41%) - S

313 4907 153087

0:19:37:26

3. % Allocation
CPU Utilization: 18%

eSS P Y

Speed: 3.72 GHz e
Memory usage: 13.2 GB |

out of 31.9 GB (41%) - //

4942 150924

0:19:40:16

53

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Contiki OS

© v Googesomsn %

) O = seaech
google com/searchq VITwre8ioq <venwareligs, k’p»lqlMMvMJM *

1. Before Allocation
CPU Utilization: 17%
Speed: 1.38 GHz
Memory usage: 10.7 GB
out 0of 31.9 GB (32%)

i rwtechye trcadcom com - externl » wtle |

ownloading VMware Workstation Pro
B 25 To ownioad Vidware Workstation Pro: Logi to the Brosdcom Support Portal -
>t broadcom.com; Afier successid login, ... Bead mom

5 Reddit - oivmmware

2. % Allocation
CPU Utilization: 10%
Speed: 4.05 GHz s ERas ,
Memory usage: 10.7 GB mem e e — o6 iso I
out of 31.9 GB (34%) Qe _ e e T

3. % Allocation
CPU Utilization: 13%
Speed: 3.93 GHz
Memory usage: 10.6 GB
out of 31.9 GB (33%)

Copyright: © 2024 authors. This is an open-access article distributed under the terms of
the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
which permits non-commercial use, distribution, and reproduction in any medium, provided

the original author and APJISDT are credited.

DOI: https://doi.org/10.61973/apjisdt.v10124.3

54

