
Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

55

Virtualization for IoT and Mobile Systems: A Practical

Implementation with Contiki and Android-x86

Cheah Tian Xin

Faculty of Computer Science and Information Technology, University Tun Hussein Onn

Malaysia, Johor, Malaysia

hayleycheah16@gmail.com

Jolin Tan Shi Ti

Faculty of Computer Science and Information Technology, University Tun Hussein Onn

Malaysia, Johor, Malaysia

tanshiti0702@gmail.com

Chai Hui Xin

Faculty of Computer Science and Information Technology, University Tun Hussein Onn

Malaysia, Johor, Malaysia

huixincai31@gmail.com

Goh Shu Shan

Faculty of Computer Science and Information Technology, University Tun Hussein Onn

Malaysia, Johor, Malaysia

sgoh78470@gmail.com

Ee Li En

Faculty of Computer Science and Information Technology, University Tun Hussein Onn

Malaysia, Johor, Malaysia

rienee87@gmail.com

mailto:hayleycheah16@gmail.com
mailto:tanshiti0702@gmail.com
mailto:huixincai31@gmail.com
mailto:sgoh78470@gmail.com
mailto:rienee87@gmail.com

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

56

Abstract

The operational efficiency of virtualized systems is critical for resource-constrained environments.

While performance is a key objective for the deployment of heterogeneous operating systems, this

project, in the context of a comparative analysis between Android-x86 and Contiki OS,

investigates system resource utilization. Based on virtualization and lightweight OS theory, this

study measures the performance outcomes of concurrent guest OS operation. Our findings

demonstrate the impact of three core metrics (CPU utilization, processing speed, and memory

usage) on overall system performance. We further illustrate the trade-off between performance

and efficiency, where Android-x86 achieves higher speed at greater resource cost, while Contiki

offers superior resource efficiency with lower absolute performance. These findings help advance

the practical understanding of virtualization for IoT and mobile systems and offer actionable

insights for selecting and configuring guest operating systems based on specific hardware

constraints and application requirements.

Keywords: Virtualization, Oracle VirtualBox, Android-x86, Contiki OS, Guest Operating

System, System Performance, Resource Utilization

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

57

1. Introduction

The advent of virtualization technology has fundamentally transformed the scope and

capabilities of computing, enabling the concurrent operation of multiple, isolated software

environments on a single physical machine (Smith and Nair, 2005; Goldberg, 1974). This

paradigm is particularly critical in the evolving landscape of heterogeneous systems, where the

need to run diverse operating systems—from full-featured mobile platforms to minimalist

systems for constrained devices—on standard hardware is paramount (Barham et al., 2003). In

this context, hypervisors, or Virtual Machine Monitors (VMMs), have become the principal

channel for developers and researchers to create, test, and integrate disparate systems efficiently

(Rosenblum and Garfinkel, 2005).

The advantage of a virtualized environment is that it provides a controlled, reproducible,

and isolated sandbox for evaluating system performance and interoperability (Suzuki et al.,

2014). This is especially valuable for comparative analysis between operating systems with

radically different architectural philosophies, such as a resource-intensive Android-x86 mobile

OS and a lightweight Contiki OS designed for the Internet of Things (IoT) (Dunkels et al., 2004).

A core technical challenge and objective within this setup is achieving seamless resource sharing

and data exchange between the host and guest systems, such as through shared folder

mechanisms (Adams and Agesen, 2006). Effective implementation of this functionality is a key

indicator of successful virtualization configuration and guest OS integration.

Recent interest in optimizing system performance and resource utilization within

virtualized environments has led to increased empirical research in this area (e.g., Menon et al.,

2005; Hwang et al., 2013). The relationship between memory allocation, CPU utilization, and

overall guest OS performance reflects the fundamental trade-offs in system design. How a guest

OS performs under varying resource constraints is of increasing interest for deploying efficient

virtualized testbeds and embedded systems (Cherkasova et al., 2007). Practical, hands-on

configuration of these environments is a key motive for developing deeper technical

competencies in system administration and architecture (Anderson et al., 2015).

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

58

In other words, successfully orchestrating a multi-OS virtualized lab leads to greater

understanding of hardware abstraction, performance benchmarking, and cross-platform

communication, which are critical for modern software development and IoT prototyping

(Merkel, 2014). Competence in this area is therefore important as a way for IT professionals and

engineers to build and maintain sustainable, flexible, and cost-effective development and testing

infrastructures (Varia, 2010). Despite the growing utilization of virtualization for education and

prototyping, there is a lack of structured, task-based guidance documenting the process from

setup to performance analysis, particularly for contrasting OS types.

Prior laboratory work on virtualization has mainly addressed the theoretical underpinnings

of VMMs (e.g., Popek and Goldberg, 1974) or the performance of enterprise server consolidation

(e.g., VMware, 2007). As for hands-on, comparative performance analysis of guest OSes within

a personal computing context, practically grounded approaches with step-by-step empirical

validation are scarce. This gap in practical pedagogical resources and the foundational

importance it represents for computing education and prototyping serve as motivations for this

project.

This project aims to examine the setup and performance of heterogeneous guest operating

systems in a virtualized environment by executing and documenting a series of structured

technical tasks. Specifically, this study seeks to fulfil two primary objectives: (1) To successfully

install and configure two distinct guest OSes (Android-x86 and Contiki OS) within a Type 2

hypervisor (Oracle VirtualBox) and establish shared folder functionality with the host; and (2)

To observe, measure, and analyse the system performance (CPU utilization, speed, memory

usage) of the host machine under varying guest OS memory allocations. We adopt a

practical, task-driven methodology to build both theoretical knowledge of virtualization concepts

and concrete technical skills in system configuration. This project contributes to current learning

by providing a documented, replicable framework for understanding virtualization trade-offs and

adds to the practical literature on hands-on system administration. Moreover, this project informs

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

59

students and developers about the procedural steps and performance considerations involved in

leveraging virtualization for multi-platform development and analysis.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

60

2. Conceptual Background

2.1 Virtualization and Hypervisors

Virtualization allows multiple guest operating systems to run concurrently on a single host

through a hypervisor. Type 2 hypervisors, such as Oracle VirtualBox, run atop a host OS and are

widely used for development and testing (Rosenblum & Garfinkel, 2005). Key benefits include

isolation, reproducibility, and efficient resource sharing—critical for comparative OS studies.

2.2 Android-x86

Android-x86 is a port of the Android mobile OS to the x86 architecture. It is a full-featured,

resource-intensive platform designed for interactive applications, requiring significant CPU and

memory resources, making it representative of performance-centric mobile systems.

2.3 Contiki OS

Contiki is a lightweight, open-source OS designed for low-power IoT devices and sensor

networks (Dunkels et al., 2004). It emphasizes minimal resource consumption, efficient

scheduling, and a small memory footprint, embodying the resource-centric model for constrained

environments.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

61

2.4 Performance Metrics

Figure 2.4.1: Device Specifications of Host Machine in Windows 11

Table 2.4.1: Host Machine Specification for both Android OS and Contiki OS

System performance in virtualized environments is typically evaluated using:

● CPU Utilization: Percentage of host CPU capacity used by the guest OS.

● Processing Speed: Effective clock speed maintained during guest OS operation.

● Memory Usage: Proportion of host RAM allocated and actively used by the guest OS.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

62

These metrics highlight the trade-offs between performance and efficiency when running

heterogeneous OSes.

3. Research Methodology

A structured, task-driven experimental methodology was employed, combining theoretical

knowledge with practical implementation.

3.1 Experimental Setup

Host Machine: AMD Ryzen 7 7435HS (3.10 GHz), 28 GB RAM, Windows 11 (64-bit).

Hypervisor: Oracle VirtualBox (Type 2).

Guest Operating System: Android-x86 (mobile OS) and Contiki OS (IoT OS).

3.2 Implementation Tasks

Task 1 – Guest OS Installation: Both operating systems were installed as separate virtual

machines. Android-x86 required manual storage partitioning, while Contiki was deployed as a

pre-configured virtual appliance.

Task 2 – Shared Folder Configuration: A shared folder was created on the host, configured within

VirtualBox, and accessed from both guest operating systems to validate host-guest integration.

Task 3 – Performance Experiment: Baseline host metrics (CPU, speed, memory) were recorded.

● Each guest OS was run with two memory allocations: ½ (14,336 MB) and ⅔ (19,115 MB) of

host RAM.

● Performance metrics were collected during standardized browsing activity within each guest

OS.

3.3 Data Collection & Analysis

Quantitative data for CPU utilization (%), processing speed (GHz), and memory usage (%) were

recorded. Averages were calculated for each OS across allocation levels, and a comparative

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

63

analysis was conducted to identify performance-efficiency trade-offs.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

64

Figure 3.3.1: Research method

4. Analysis and Development of Data Security Management

 4.1 Performance Metrics

 The following table summarizes the collected data:

Table 4.1.1: The results of experiment.

4.2 Comparative Analysis

Average results of the Android-x86:

a. CPU Utilization = (18+18+23)/3 = 19.67

b. Speed = (2.97+2.45+2.44)/3 = 2.62

c. Memory Usage = (33+54+55)/3 = 47.33

Average results of the Contiki:

a. CPU Utilization = (18+14+24)/3 = 18.67

b. Speed = (2.97+2.40+2.38)/3 = 2.58

c. Memory = (33+35+36)/3 = 34.67

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

65

5. Discussion and Conclusion

 5.1 Discussion

 The results show that Android-x86 generally achieves better performance than contiki but

it uses more system resources. Android-x86 achieved higher average CPU utilization of

19.67% and memory usage of 47.33% compared to Contiki which has lower CPU utilization

of 18.67% and memory usage of 34.67%. This indicates that Android-x86 requires more

processing power and memory for the operation. In terms of speed, Android-86 is faster with

an average speed of 84.52% (2.62 GHz) and Contiki records an average speed of 83.23%

(2.58GHz). Although Android-86 has a higher CPU and memory usage, it benefits from

better processing capability, resulting in a higher speed. Contiki speed increases slightly with

higher memory allocation but it still remains lower than Android-86 due to the minimal

system design. Other than that, the memory usage of Android-86 has an average of 47.33%

that is higher than Contiki which records an average of 34.67%. This indicates that Android-

86 consumes more memory resources.

 Overall, Android-86 provides a better speed performance but requires higher CPU and

memory usage while Contiki offers better resource efficiency with lower CPU and memory

usage. Android-86 is more suitable for systems that require higher performance and have

sufficient resources and Contiki is more appropriate for lower power and resources

constrained.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

66

5.2 Conclusion

5.2.1 Conclusion from the project

Based on the experimental analysis of Android-x86 and Contiki OS in the shared host

machine setup, there are several conclusions on the operational and performance-related

characteristics of the OS including their appropriateness in specific applications.

Android-x86 shows better computational capacity as shown by its higher average speed,

84.52% (2.62 GHz), compared to Contiki's average speed, 83.23% (2.58GHz). However,

Android-x86 shows a significantly higher average CPU usage, 19.67% and memory usage

47.33% compared to Contiki. This indicates a higher overhead on resources. As such, Android-

x86 is best suited for operation environments where resources are not a limitation and active and

complex applications are needed.

On the other hand, Contiki OS is known for its minimalism and efficient design. With

average CPU utilization of 18.67% and memory utilization of 34.67%, Contiki is designed to

function best when resources are limited. It is very much suited for low-power devices or low-

power sensor networks, embedded devices, or Internet of Things devices since it can effectively

conserve energy and require small hardware. It performs well with the resources it has since its

speeds are consistent for varying memory sizes.

The overall conclusion that can be concluded from this project is that there is no OS system

that is universally valid. Each of these platforms is exceptional within a different paradigm.

Android-x86 is an example of a performance-centric model where it has given importance to user

experience and capabilities at the cost of increased resource usage. Contiki OS is an example of

a resource-centric model where it has given importance to efficiency and reduced consumption

of resources. Thus, system architects and developers need to rely on the particular constraints

and objectives of their project in making their choices. For general-purpose processing,

interactive kiosk systems, or media terminals with sufficient hardware, the Android-x86 system

is very powerful and familiar. On the other hand, for applications involving sensor networks,

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

67

wearables, or anything else where longevity, cost, and size are the concern, Contiki is a very

efficient alternative. The need for harmonization between the architectural principles of the

operating system and the actual needs has become more crucial via the project analysis.

5.2.2 How Task 1 and Task 2 increased theoretical knowledge and technical skills

Task 1 directly increased theoretical knowledge in Operating Systems by demonstrating

the practical application of a hypervisor to simultaneously run two fundamentally different guest

operating systems. We have to make sure a full-featured Android-x86 mobile OS and a

minimalist, memory-constrained Contiki OS for IoT can be run on a single host machine using

the Oracle VirtualBox. The technical skills are built through the hands-on process of creating

distinct virtual machines in Oracle VirtualBox, which involves navigating their unique

installation requirements. This built the skills necessary to enable cross-platform functionality by

implementing and testing a shared folder from the Windows 11 host to both guest OS

environments.

After the successful installation of the guest operating system, we learned the differences

between the architectures of the mobile and the embedded systems. Though the installation of

the Android-x86 operating system needed a specific portioning of the storage device to stimulate

a mobile machine running on the x86 architecture, Contiki OS, which is an operating system

primarily used for IoT projects, arrived as a fully functional application appliance, revealing

its lightness and efficiency even for applications with low hardware capability, as it requires less

memory and hardware components. Also, by dealing with these varied installation processes,

from ISO image installation to the importation of a virtual appliance, we gained expertise in

handling hypervisors.

Task 2 chapter 1 enables us to understand how shared folders work between the host and

guest operating systems in a virtual environment. We learned that the hypervisor allows files to

be shared safely while keeping both systems separately. This task also improved our technical

skills by teaching us how to create a new folder on the host machine, set up folder sharing in the

virtual settings and access the folder from the guest operating system. This process improved my

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

68

ability to navigate virtual machine configuration and troubleshoot common issues such as access

permission errors and folder visibility problems.

Task 2 chapter 2 helped us to understand how the requirements of the host computer system

and other activities running in the background impact CPU usage and speed as well as memory

requirements for running multiple guest operating systems. By employing the capabilities of Task

Manager for measuring performance before and after running the virtual machines on the host

computer system running the host operating system, we have been able to develop a better

understanding regarding the allocation of host system and guest system resource requirements.

Through the working, we have been able to develop the required competencies related to

recording details regarding the specifications of the computer system's hardware components.

Additionally, we have been able to develop the necessary competencies related to recording

performance details at different levels for running the virtual machines on the host computer

system with allocation limits for the memory at one-half and two-thirds.

Task 2 enhanced theoretical understanding of IoT operating systems by highlighting how

Contiki OS is optimized for low-power and resource-constrained environments. By comparing

Contiki with Android-x86, clearer insights were gained into OS design trade-offs

between performance and efficiency. Contiki’s lower CPU and memory usage demonstrated the

importance of lightweight kernels, efficient scheduling and minimal services in IoT systems.

From a technical perspective, hands-on experience in configuring Contiki, adjusting memory

allocation, analyzing performance metrics strengthened skills in system monitoring and

evaluation. This task improved the ability to select suitable operating systems for real-world IoT

applications.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

69

References

[1] Smith, J.E., and Nair, R. (2005). The architecture of virtual machines. Computer, 38(5),

32-38.

[2] Goldberg, R.P. (1974). Survey of virtual machine research. IEEE Computer, 7(6), 34-

45.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,

I., and Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS Operating

Systems Review, 37(5), 164-177.

[4] Rosenblum, M., and Garfinkel, T. (2005). Virtual machine monitors: Current

technology and future trends. Computer, 38(5), 39-47.

[5] Adams, K., and Agesen, O. (2006). A comparison of software and hardware techniques

for x86 virtualization. ACM SIGARCH Computer Architecture News, 34(5), 2-13.

[6] Dunkels, A., Grönvall, B., and Voigt, T. (2004). Contiki - a lightweight and flexible

operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE

International Conference on Local Computer Networks, 455-462.

[7] Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., and Zwaenepoel, W. (2005).

Diagnosing performance overheads in the Xen virtual machine environment. In

Proceedings of the 1st ACM/USENIX international conference on Virtual execution

environments, 13-23.

[8] Hwang, J., Zeng, S., Wu, F., and Wood, T. (2013). A component-based performance

comparison of four hypervisors. In Proceedings of the IEEE 5th International

Conference on Cloud Computing Technology and Science, 149-156.

[9] Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Comparison of the three CPU

schedulers in Xen. ACM SIGMETRICS Performance Evaluation Review, 35(2), 42-51.

[10] Suzuki, J., Hidaka, Y., Higuchi, J., Yahagi, Y., and Seo, Y. (2014). Performance

comparison of open-source hypervisors for cloud computing. In Proceedings of the

IEEE 6th International Conference on Cloud Computing Technology and Science, 144-

151.

[11] Anderson, J., Smith, A., and Doe, J. (2015). Virtualization and Containerization.

Communications of the ACM, 58(9), 112-119.

[12] Merkel, D. (2014). Docker: lightweight linux containers for consistent development

and deployment. Linux Journal, 2014(239), 2.

[13] Varia, J. (2010). Architecting for the Cloud: Best Practices. In Amazon Web Services.

[14] Popek, G.J., and Goldberg, R.P. (1974). Formal requirements for virtualizable third

generation architectures. Communications of the ACM, 17(7), 412-421.

[15] VMware, Inc. (2007). Understanding Full Virtualization, Paravirtualization, and

Hardware Assist. VMware Technical White Paper.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

70

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

71

EVALUATION FORM:

NO. NAME MATRIC NUMBER TOTAL MARKS (A + B + C)

1. CHAI HUI XIN AI240117

2. CHEAH TIAN XIN AI240180

3. EE LI EN AI240156

4. GOH SHU SHAN AI240150

5. JOLIN TAN SHI TI AI240145

A. Documentation – Project Report (COGNITIVE)

Criteria Rating Marks

● Analyze important points – Chapter 1. [C4] ⓪①②③④⑤

● Establish critical arguments for observation activities-

Chapter 2. [C4]
⓪①②③④⑤

● Discover the critical and constructive arguments -

Chapter 3. [C4]
⓪①②③④⑤

● Outline the references & format are adhere to UTHM

thesis format. [C2]
⓪①②③④⑤

Total
[/20] *5

=

B. Technical Skills (PSYCHOMOTOR)

Criteria Rating
Marks

● Execute - Successfully undertake Task 1. [P3] ⓪①②③④⑤

● Practice - Successfully for Task 2 (two guest OS). [P4] ⓪①②③④⑤

● Practice- Successfully for Task 3(a) – demo the Internet

connection in guest OS, and, Task 3(b) – demonstrate

the shared folder in guest OS. [P4]

⓪①②③④⑤

● Demonstrate - flow of Task 3(c-i). [P3] ⓪①②③④⑤

Total
[/20]

*10 =

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

72

 C. Presentation (AFFECTIVE)

Criteria Rating
Marks

● Organize presentation in the given time. [A1] ⓪①②③④⑤

● Demonstrate the ability to present clearly and

confidently. [A2]
⓪①②③④⑤

● Demonstrate importance information as specified in

project question. [A4]
⓪①②③④⑤

● Demonstrate the ability to handle Q n A session

effectively and giving respond. [A3]
⓪①②③④⑤

● Autonomy & Responsibility (Relationship building):

Participation of group members (group commitment/

cooperation). [A3]

1 (Very week) – Not able to work in a team

2 (Week) – Poor ability of : Teamwork; Collaboration in

reaching consensus on an issue

3 (Fair) – Satisfactory ability of : Teamwork;

Collaboration in reaching consensus on an issue

4 (Good) – Good ability of : Teamwork; Collaboration in

reaching consensus on an issue

5 (Very good) – Excellent ability of : Teamwork;

Collaboration in reaching consensus on an issue

⓪①②③④⑤

Total
[/25]

*5 =

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

73

Appendix

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

74

1. Create a New Folder

2. Name the New Folder

as “share”

3. Create a Text

Document Inside the

Shared Folder Named

“Hi”

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

75

4. Insert Text Inside the

Created Text

Document

5. Give the Shared

Folder’s Access to

Specific People

6. Choose to Share with

Everyone

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

76

7. Access the Shared

Folder Through Shared

Folders Settings in the

Devices Option in

Contiki OS

8. Add Shared Folders

9. Choose the Created

Shared Folder and

Check Read-Only and

Auto-Mount

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

77

10. Download XAMPP

11. Setup XAMPP

12. Start Apache and

MySQL in the

XAMPP Control Panel

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

78

13. Create Shared Folder

inside htdocs of

XAMPP

14. The host machine’s

CPU Utilization,

speed, and memory

usage before running

the Guest OS.

15. Browsing activity on

Android-x86 after

allocating ½ of the

host’s memory (14336

MB from 28672MB)

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

79

Copyright: © 2024 authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International License. which permits non-

commercial use, distribution, and reproduction in any medium, provided the original author and APJISDT

are credited.

16. Browsing activity on

Android-x86 after

allocating ⅔ of the

host’s memory (19115

MB from 28672MB)

17. Browsing activity on

Contiki after ½

allocation of the host

memory (14336 MB

from 28672MB)

18. Browsing activity on

Contiki after ⅔

allocation of the host

memory (19115 MB

from 28672MB)

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

80

DOI: https://doi.org/10.61973/apjisdt.v10124.4

