Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Virtualization for IoT and Mobile Systems: A Practical
Implementation with Contiki and Android-x86

Cheah Tian Xin

Faculty of Computer Science and Information Technology, University Tun Hussein Onn
Malaysia, Johor, Malaysia

hayleycheahl6@gmail.com

Jolin Tan Shi Ti

Faculty of Computer Science and Information Technology, University Tun Hussein Onn
Malaysia, Johor, Malaysia

tanshiti0702@gmail.com

Chai Hui Xin

Faculty of Computer Science and Information Technology, University Tun Hussein Onn
Malaysia, Johor, Malaysia

huixincai3 1 @gmail.com

Goh Shu Shan

Faculty of Computer Science and Information Technology, University Tun Hussein Onn
Malaysia, Johor, Malaysia

sgoh78470(@gmail.com

Ee Li En

Faculty of Computer Science and Information Technology, University Tun Hussein Onn
Malaysia, Johor, Malaysia

rienee87(@gmail.com

55

mailto:hayleycheah16@gmail.com
mailto:tanshiti0702@gmail.com
mailto:huixincai31@gmail.com
mailto:sgoh78470@gmail.com
mailto:rienee87@gmail.com

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article
Abstract

The operational efficiency of virtualized systems is critical for resource-constrained environments.
While performance is a key objective for the deployment of heterogeneous operating systems, this
project, in the context of a comparative analysis between Android-x86 and Contiki OS,
investigates system resource utilization. Based on virtualization and lightweight OS theory, this
study measures the performance outcomes of concurrent guest OS operation. Our findings
demonstrate the impact of three core metrics (CPU utilization, processing speed, and memory
usage) on overall system performance. We further illustrate the trade-off between performance
and efficiency, where Android-x86 achieves higher speed at greater resource cost, while Contiki
offers superior resource efficiency with lower absolute performance. These findings help advance
the practical understanding of virtualization for IoT and mobile systems and offer actionable
insights for selecting and configuring guest operating systems based on specific hardware

constraints and application requirements.

Keywords: Virtualization, Oracle VirtualBox, Android-x86, Contiki OS, Guest Operating

System, System Performance, Resource Utilization

56

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

1.Introduction

The advent of virtualization technology has fundamentally transformed the scope and
capabilities of computing, enabling the concurrent operation of multiple, isolated software
environments on a single physical machine (Smith and Nair, 2005; Goldberg, 1974). This
paradigm is particularly critical in the evolving landscape of heterogeneous systems, where the
need to run diverse operating systems—from full-featured mobile platforms to minimalist
systems for constrained devices—on standard hardware is paramount (Barham et al., 2003). In
this context, hypervisors, or Virtual Machine Monitors (VMMs), have become the principal
channel for developers and researchers to create, test, and integrate disparate systems efficiently

(Rosenblum and Garfinkel, 2005).

The advantage of a virtualized environment is that it provides a controlled, reproducible,
and isolated sandbox for evaluating system performance and interoperability (Suzuki et al.,
2014). This is especially valuable for comparative analysis between operating systems with
radically different architectural philosophies, such as a resource-intensive Android-x86 mobile
OS and a lightweight Contiki OS designed for the Internet of Things (IoT) (Dunkels et al., 2004).
A core technical challenge and objective within this setup is achieving seamless resource sharing
and data exchange between the host and guest systems, such as through shared folder
mechanisms (Adams and Agesen, 2006). Effective implementation of this functionality is a key

indicator of successful virtualization configuration and guest OS integration.

Recent interest in optimizing system performance and resource utilization within
virtualized environments has led to increased empirical research in this area (e.g., Menon et al.,
2005; Hwang et al., 2013). The relationship between memory allocation, CPU utilization, and
overall guest OS performance reflects the fundamental trade-offs in system design. How a guest
OS performs under varying resource constraints is of increasing interest for deploying efficient
virtualized testbeds and embedded systems (Cherkasova et al., 2007). Practical, hands-on
configuration of these environments is a key motive for developing deeper technical

competencies in system administration and architecture (Anderson et al., 2015).

57

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

In other words, successfully orchestrating a multi-OS virtualized lab leads to greater
understanding of hardware abstraction, performance benchmarking, and cross-platform
communication, which are critical for modern software development and IoT prototyping
(Merkel, 2014). Competence in this area is therefore important as a way for IT professionals and
engineers to build and maintain sustainable, flexible, and cost-effective development and testing
infrastructures (Varia, 2010). Despite the growing utilization of virtualization for education and
prototyping, there is a lack of structured, task-based guidance documenting the process from

setup to performance analysis, particularly for contrasting OS types.

Prior laboratory work on virtualization has mainly addressed the theoretical underpinnings
of VMMs (e.g., Popek and Goldberg, 1974) or the performance of enterprise server consolidation
(e.g., VMware, 2007). As for hands-on, comparative performance analysis of guest OSes within
a personal computing context, practically grounded approaches with step-by-step empirical
validation are scarce. This gap in practical pedagogical resources and the foundational
importance it represents for computing education and prototyping serve as motivations for this

project.

This project aims to examine the setup and performance of heterogeneous guest operating
systems in a virtualized environment by executing and documenting a series of structured
technical tasks. Specifically, this study seeks to fulfil two primary objectives: (1) To successfully
install and configure two distinct guest OSes (Android-x86 and Contiki OS) within a Type 2
hypervisor (Oracle VirtualBox) and establish shared folder functionality with the host; and (2)
To observe, measure, and analyse the system performance (CPU utilization, speed, memory
usage) of the host machine under varying guest OS memory allocations. We adopt a
practical, task-driven methodology to build both theoretical knowledge of virtualization concepts
and concrete technical skills in system configuration. This project contributes to current learning
by providing a documented, replicable framework for understanding virtualization trade-offs and

adds to the practical literature on hands-on system administration. Moreover, this project informs

58

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article
students and developers about the procedural steps and performance considerations involved in

leveraging virtualization for multi-platform development and analysis.

59

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

2.Conceptual Background

2.1 Virtualization and Hypervisors

Virtualization allows multiple guest operating systems to run concurrently on a single host
through a hypervisor. Type 2 hypervisors, such as Oracle VirtualBox, run atop a host OS and are
widely used for development and testing (Rosenblum & Garfinkel, 2005). Key benefits include

isolation, reproducibility, and efficient resource sharing—critical for comparative OS studies.
2.2 Android-x86

Android-x86 is a port of the Android mobile OS to the x86 architecture. It is a full-featured,
resource-intensive platform designed for interactive applications, requiring significant CPU and

memory resources, making it representative of performance-centric mobile systems.
2.3 Contiki OS

Contiki is a lightweight, open-source OS designed for low-power IoT devices and sensor
networks (Dunkels et al., 2004). It emphasizes minimal resource consumption, efficient
scheduling, and a small memory footprint, embodying the resource-centric model for constrained

environments.

60

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

2.4 Performance Metrics

System > About

) Processc
AMD Ryzen 7 7435HS

LAPTOP-K73EVT81

LOQ 15ARP9

Rename this PC

(@ Device specifications

Device name
Processor
Installed RAM
Device ID
Product ID
System type
Pen and touch

Related links Dom

Figure 2.4.1: Device Specifications of Host Machine in Windows 11

Computer hardware specifications '
Components Specifications
1. Processor AMD Ryzen 7 7435HS
e Speed 3.10 GHz
e Manufacturer & Model LOQ 15ARP9
2. Installed Memory (RAM) 28.0 GB
3. Operating System & System type 64-bit operating system, x64-based processor

Table 2.4.1: Host Machine Specification for both Android OS and Contiki OS
System performance in virtualized environments is typically evaluated using:

e CPU Utilization: Percentage of host CPU capacity used by the guest OS.
® Processing Speed: Effective clock speed maintained during guest OS operation.

e Memory Usage: Proportion of host RAM allocated and actively used by the guest OS.

61

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article
These metrics highlight the trade-offs between performance and efficiency when running

heterogeneous OSes.

3. Research Methodology

A structured, task-driven experimental methodology was employed, combining theoretical

knowledge with practical implementation.

3.1 Experimental Setup

Host Machine: AMD Ryzen 7 7435HS (3.10 GHz), 28 GB RAM, Windows 11 (64-bit).
Hypervisor: Oracle VirtualBox (Type 2).

Guest Operating System: Android-x86 (mobile OS) and Contiki OS (IoT OS).

3.2 Implementation Tasks

Task 1 — Guest OS Installation: Both operating systems were installed as separate virtual
machines. Android-x86 required manual storage partitioning, while Contiki was deployed as a

pre-configured virtual appliance.

Task 2 — Shared Folder Configuration: A shared folder was created on the host, configured within

VirtualBox, and accessed from both guest operating systems to validate host-guest integration.
Task 3 — Performance Experiment: Baseline host metrics (CPU, speed, memory) were recorded.

e Each guest OS was run with two memory allocations: 2 (14,336 MB) and % (19,115 MB) of
host RAM.

e Performance metrics were collected during standardized browsing activity within each guest

OS.
3.3 Data Collection & Analysis

Quantitative data for CPU utilization (%), processing speed (GHz), and memory usage (%) were

recorded. Averages were calculated for each OS across allocation levels, and a comparative

62

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

analysis was conducted to identify performance-efficiency trade-offs.

Start: Research Problem

L
ure Re

ion, Android-
ontiki 05

¥

Hypervisor

ared Folder
Configuration

r ¥ ¥

Create shared folder on Enable shared folder in Bt 2 Task 3 Performance
host: virtualBox | Experiment

i
Easeline measurement:
Host without Vs

CPU Utilization
GHE, ory Usage %

L]

Data Analysis

’ L]
0+ 0000

Compare performance
Caloulat: ¥

Report Writing &
Documentation

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Figure 3.3.1: Research method

4. Analysis and Development of Data Security Management

4.1 Performance Metrics

The following table summarizes the collected data:

System CPU Utilization (%) Speed (%) Memory Usage (%)
Performance
Memory size Before N Before L 2 Before N
2 3 2 3 2 3
allocation allocation allocation
Android-x86 18 18 | 23 2.97 245 | 2.44 33 54 | 55
Contiki 18 14 | 24 2.97 240 | 2.38 33 35 | 36

Table 4.1.1: The results of experiment.

4.2 Comparative Analysis

Average results of the Android-x86:
a. CPU Utilization = (18+18+23)/3 = 19.67
b. Speed =(2.97+2.45+2.44)/3 =2.62
c. Memory Usage = (33+54+55)/3 =47.33

Average results of the Contiki:
a. CPU Utilization = (18+14+24)/3 = 18.67
b. Speed =(2.97+2.40+2.38)/3 =2.58
c. Memory = (33+35+36)/3 = 34.67

64

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

5. Discussion and Conclusion

5.1 Discussion

The results show that Android-x86 generally achieves better performance than contiki but
it uses more system resources. Android-x86 achieved higher average CPU utilization of
19.67% and memory usage of 47.33% compared to Contiki which has lower CPU utilization
of 18.67% and memory usage of 34.67%. This indicates that Android-x86 requires more
processing power and memory for the operation. In terms of speed, Android-86 is faster with
an average speed of 84.52% (2.62 GHz) and Contiki records an average speed of 83.23%
(2.58GHz). Although Android-86 has a higher CPU and memory usage, it benefits from
better processing capability, resulting in a higher speed. Contiki speed increases slightly with
higher memory allocation but it still remains lower than Android-86 due to the minimal
system design. Other than that, the memory usage of Android-86 has an average of 47.33%
that is higher than Contiki which records an average of 34.67%. This indicates that Android-

86 consumes more memory resources.

Overall, Android-86 provides a better speed performance but requires higher CPU and
memory usage while Contiki offers better resource efficiency with lower CPU and memory
usage. Android-86 is more suitable for systems that require higher performance and have
sufficient resources and Contiki is more appropriate for lower power and resources

constrained.

65

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

5.2 Conclusion
5.2.1 Conclusion from the project

Based on the experimental analysis of Android-x86 and Contiki OS in the shared host
machine setup, there are several conclusions on the operational and performance-related

characteristics of the OS including their appropriateness in specific applications.

Android-x86 shows better computational capacity as shown by its higher average speed,
84.52% (2.62 GHz), compared to Contiki's average speed, 83.23% (2.58GHz). However,
Android-x86 shows a significantly higher average CPU usage, 19.67% and memory usage
47.33% compared to Contiki. This indicates a higher overhead on resources. As such, Android-
x86 is best suited for operation environments where resources are not a limitation and active and

complex applications are needed.

On the other hand, Contiki OS is known for its minimalism and efficient design. With
average CPU utilization of 18.67% and memory utilization of 34.67%, Contiki is designed to
function best when resources are limited. It is very much suited for low-power devices or low-
power sensor networks, embedded devices, or Internet of Things devices since it can effectively
conserve energy and require small hardware. It performs well with the resources it has since its

speeds are consistent for varying memory sizes.

The overall conclusion that can be concluded from this project is that there is no OS system
that is universally valid. Each of these platforms is exceptional within a different paradigm.
Android-x86 is an example of a performance-centric model where it has given importance to user
experience and capabilities at the cost of increased resource usage. Contiki OS is an example of
a resource-centric model where it has given importance to efficiency and reduced consumption
of resources. Thus, system architects and developers need to rely on the particular constraints
and objectives of their project in making their choices. For general-purpose processing,
interactive kiosk systems, or media terminals with sufficient hardware, the Android-x86 system

is very powerful and familiar. On the other hand, for applications involving sensor networks,

66

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article
wearables, or anything else where longevity, cost, and size are the concern, Contiki is a very
efficient alternative. The need for harmonization between the architectural principles of the

operating system and the actual needs has become more crucial via the project analysis.

5.2.2 How Task 1 and Task 2 increased theoretical knowledge and technical skills

Task 1 directly increased theoretical knowledge in Operating Systems by demonstrating
the practical application of a hypervisor to simultaneously run two fundamentally different guest
operating systems. We have to make sure a full-featured Android-x86 mobile OS and a
minimalist, memory-constrained Contiki OS for IoT can be run on a single host machine using
the Oracle VirtualBox. The technical skills are built through the hands-on process of creating
distinct virtual machines in Oracle VirtualBox, which involves navigating their unique
installation requirements. This built the skills necessary to enable cross-platform functionality by
implementing and testing a shared folder from the Windows 11 host to both guest OS

environments.

After the successful installation of the guest operating system, we learned the differences
between the architectures of the mobile and the embedded systems. Though the installation of
the Android-x86 operating system needed a specific portioning of the storage device to stimulate
a mobile machine running on the x86 architecture, Contiki OS, which is an operating system
primarily used for IoT projects, arrived as a fully functional application appliance, revealing
its lightness and efficiency even for applications with low hardware capability, as it requires less
memory and hardware components. Also, by dealing with these varied installation processes,
from ISO image installation to the importation of a virtual appliance, we gained expertise in

handling hypervisors.

Task 2 chapter 1 enables us to understand how shared folders work between the host and
guest operating systems in a virtual environment. We learned that the hypervisor allows files to
be shared safely while keeping both systems separately. This task also improved our technical
skills by teaching us how to create a new folder on the host machine, set up folder sharing in the

virtual settings and access the folder from the guest operating system. This process improved my

67

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article
ability to navigate virtual machine configuration and troubleshoot common issues such as access

permission errors and folder visibility problems.

Task 2 chapter 2 helped us to understand how the requirements of the host computer system
and other activities running in the background impact CPU usage and speed as well as memory
requirements for running multiple guest operating systems. By employing the capabilities of Task
Manager for measuring performance before and after running the virtual machines on the host
computer system running the host operating system, we have been able to develop a better
understanding regarding the allocation of host system and guest system resource requirements.
Through the working, we have been able to develop the required competencies related to
recording details regarding the specifications of the computer system's hardware components.
Additionally, we have been able to develop the necessary competencies related to recording
performance details at different levels for running the virtual machines on the host computer

system with allocation limits for the memory at one-half and two-thirds.

Task 2 enhanced theoretical understanding of IoT operating systems by highlighting how
Contiki OS is optimized for low-power and resource-constrained environments. By comparing
Contiki with Android-x86, clearer insights were gained into OS design trade-offs
between performance and efficiency. Contiki’s lower CPU and memory usage demonstrated the
importance of lightweight kernels, efficient scheduling and minimal services in IoT systems.
From a technical perspective, hands-on experience in configuring Contiki, adjusting memory
allocation, analyzing performance metrics strengthened skills in system monitoring and
evaluation. This task improved the ability to select suitable operating systems for real-world [oT

applications.

68

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

References

[1] Smith, J.E., and Nair, R. (2005). The architecture of virtual machines. Computer, 38(5),
32-38.

[2] Goldberg, R.P. (1974). Survey of virtual machine research. IEEE Computer, 7(6), 34-
45.

[3] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., and Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS Operating
Systems Review, 37(5), 164-177.

[4] Rosenblum, M., and Garfinkel, T. (2005). Virtual machine monitors: Current
technology and future trends. Computer, 38(5), 39-47.

[5] Adams, K., and Agesen, O. (2006). A comparison of software and hardware techniques
for x86 virtualization. ACM SIGARCH Computer Architecture News, 34(5), 2-13.

[6] Dunkels, A., Gronvall, B., and Voigt, T. (2004). Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proceedings of the 29th Annual IEEE
International Conference on Local Computer Networks, 455-462.

[7] Menon, A., Santos, J.R., Turner, Y., Janakiraman, G.J., and Zwaenepoel, W. (2005).
Diagnosing performance overheads in the Xen virtual machine environment. In
Proceedings of the 1st ACM/USENIX international conference on Virtual execution
environments, 13-23.

[8] Hwang, J., Zeng, S., Wu, F., and Wood, T. (2013). A component-based performance
comparison of four hypervisors. In Proceedings of the IEEE 5th International
Conference on Cloud Computing Technology and Science, 149-156.

[9] Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Comparison of the three CPU
schedulers in Xen. ACM SIGMETRICS Performance Evaluation Review, 35(2), 42-51.

[10] Suzuki, J., Hidaka, Y., Higuchi, J., Yahagi, Y., and Seo, Y. (2014). Performance
comparison of open-source hypervisors for cloud computing. In Proceedings of the
IEEE 6th International Conference on Cloud Computing Technology and Science, 144-
151.

[11] Anderson, J., Smith, A., and Doe, J. (2015). Virtualization and Containerization.
Communications of the ACM, 58(9), 112-119.

[12] Merkel, D. (2014). Docker: lightweight linux containers for consistent development
and deployment. Linux Journal, 2014(239), 2.

[13] Varia, J. (2010). Architecting for the Cloud: Best Practices. In Amazon Web Services.

[14] Popek, G.J., and Goldberg, R.P. (1974). Formal requirements for virtualizable third

generation architectures. Communications of the ACM, 17(7), 412-421.
[15] VMware, Inc. (2007). Understanding Full Virtualization, Paravirtualization, and
Hardware Assist. VMware Technical White Paper.

69

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

70

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

EVALUATION FORM:
NO. NAME MATRIC NUMBER TOTAL MARKS (A +B + C)
1. CHAI HUI XIN AI240117
2. CHEAH TIAN XIN Al240180
3. EE LI EN AI240156
4. GOH SHU SHAN AI240150
5. JOLIN TAN SHI TI Al240145
A. Documentation — Project Report (COGNITIVE)
Criteria Rating Marks
e Analyze important points — Chapter 1. [C4] 00060006

e Establish critical arguments for observation activities-

Chapter 2. [C4] 00006
e Discover the critical and constructive arguments -

Chapter 3. [C4] 006600
e Outline the references & format are adhere to UTHM

thesis format. [C2] OO@E®E

k
Total [: /20 1%5
B. Technical Skills (PSYCHOMOTOR)
Criteria Rating AELLE
Execute - Successfully undertake Task 1. [P3] 000006
Practice - Successfully for Task 2 (two guest OS). [P4] 0000006
e Practice- Successfully for Task 3(a) — demo the Internet
connection in guest OS, and, Task 3(b) — demonstrate 000006
the shared folder in guest OS. [P4]
o Demonstrate - flow of Task 3(c-1). [P3] 0000006
[/20]
Total *10 =

71

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

C. Presentation (AFFECTIVE)

Criteria Rating Marks

Organize presentation in the given time. [A1] 0000006

Demonstrate the ability to present clearly and
confidently. [A2] OO@E®E

e Demonstrate importance information as specified in
project question. [A4] 00BO00
e Demonstrate the ability to handle Q n A session
effectively and giving respond. [A3] 00BO00
e Autonomy & Responsibility (Relationship building):
Participation of group members (group commitment/
cooperation). [A3]
1 (Very week) — Not able to work in a team
2 (Week) — Poor ability of : Teamwork; Collaboration in
reaching consensus on an issue
3 (Fair) — Satisfactory ability of : Teamwork; 00BO00
Collaboration in reaching consensus on an issue
4 (Good) — Good ability of : Teamwork; Collaboration in
reaching consensus on an issue
5 (Very good) — Excellent ability of : Teamwork;
Collaboration in reaching consensus on an issue

Total L :/25]

72

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

Appendix

73

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

1. Create a New Folder

2. Name the New Folder
as “share”

3. Create a Text
Document Inside the
Shared Folder Named
‘GHi”

74

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

OnaDrive > HuiXin-Parsonal > Desktop > share

-

File Edit View

Hello from host machine.

4. Insert Text Inside the
Created Text
Document

Open
Pin to Quick access
Always keep on this device
Free up space
@ Share
Copy Link
Manage access
v online
Folder color

52 Openin Terminal

Upload to WPS Cloud

5. Give the Shared
Folder’s Access to
Specific People

Sync and Backup to WPS Cloud
Scan with Microsoft Defender.

Give access to
Restore previous versions
Include in library
Pin to Start
Copy as path

> Share
Send to
Cut
Copy
Create shortcut
Delete

Rename

Properties

@ Remove access

L Spt;lhc people...

Network access

Choose people to share with

Everyone

Type a name and then click Add, or click the arrow to find someone.

|

Name
%, Chai

6. Choose to Share with
Everyone

Permission Level

Owner

Add

Cancel

75

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

7. Access the Shared
Folder Through Shared
Folders Settings in the
Devices Option in
Contiki OS

o
”
-
.
e
-
W
B
7
7z

£ Contiki - Settings

Basic Expert

Shared Folders

Name Path Access Auto Mount

Global Folders
Machine Folders
Transient Folders

8. Add Shared Folders

User Interface

Appearance Normal (window) v
Mini ToolBar @ Show in

Il shared Folders Show at Top of Screen

Bl ser merace @ nomRSsmOTE €0

oK Cancel Help

Shared Folders

Na i, Access AutoMount At B
£ Add Share

|:| Display Folder Path M \Users\..Documents\share

9. Choose the Created —_—
Shared Folder and > oo
Check Read-Only and B ~
Auto-Mount ® -

rx

I shared Folders

Bl user imertace nomRS /MBS OO

® Read-only

oK Cancel Help

76

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

10.Download XAMPP

XAMPP Apache + MariaDB + PHP + Perl

What is XAMPP?

XAMPP is the most popular PHP development
environment

XAMPP 820

XAMPP

2§ XANPP fogVindows B XAMPP for Linux & XAVPP for 08 X
212 (PHPB2 1. 2(Pr 4 (PHP 824,

NP Lo Hi Apache Friends!

11.Setup XAMPP

- Setup = X

Setup - XAMPP

€3

Welcome to the XAMPP Setup Wizard.

XAMPP Control Panel

< Back Cancel
'
XAMPP Control Panel v3.3.0 [Compiled: Apr 6th 2021] —L;o a X
$
XAMPP Control Panel v3.3.0 # contia
Wodules
Service Module PID(s) Port(s) Actions P Newia
Apache 2;‘252‘5 80, 443 Stop Admin Config Logs B shel
MySQL 12860 3306 [Stop | Admin Config Logs Explorer
FlleZtla Start Config Logs ¥ Services
12.Start Apache and s = P —
MySQL ln the Tomcat Start . Config Logs M out

M [main] All prerequisites found

) PV [main] Initializing Modules

) P [main] Starting Check-Timer
M [main] Control Panel Ready
M [Apache] Attempting to start Apache app
M [Apache] Status change detected: running
A [mysql] Attempting to stat MySQL app

[mysql] Status change detected: running

77

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

J > ThisPC > Windows-SSD(C) > xampp > htdocs >

W N Sort v =V
Name L3 Date modified Type
W dashboard 16/12/2025 10:19 PM File folder
13.Create Shared Folder
. . M img 16/12/2025 10:19 PM File folder
inside htdocs of P

XAMPP B xampp 16/12/2025 10:19 PM File folder

o applications 16/6/2022 12:07 AM Microsoft Edge HT...
. bitnami 16/6/2022 12:07 AM Cascading Style Sh...

favicon 16/7/2015 11:32 PM ICO File

. index.php 16/7/2015 11:32 PM PHP File

‘- FiIeShare‘ 16/12/2025 10:29 PM File folder

Memory

14.The host machine’s
CPU Utilization,
speed, and memory
usage before running
the Guest OS.

Microcomputers

The invantion of arg

Memory

15.Browsing activity on
Android-x86 after
allocating % of the
host’s memory (14336
MB from 28672MB)

78

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

16.Browsing activity on
Android-x86 after
allocating % of the
host’s memory (19115
MB from 28672MB)

BOWE/NBEN @ MWrsicy
mmGq

Memory

17.Browsing activity on
Contiki after 2
allocation of the host
memory (14336 MB
from 28672MB)

BONE /TN O Wacnc

L

Memory

18.Browsing activity on
Contiki after %
allocation of the host
memory (19115 MB
from 28672MB)

NONES/NDAN 6l
mmoq

Memory

Copyright: © 2024 authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International License. which permits

non-

commercial use, distribution, and reproduction in any medium, provided the original author and APJISDT

are credited.

79

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

DOI: https://doi.org/10.61973/apjisdt.v10124.4

80

