
Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

79

Scripting Programming & Simple Messaging Between Server and

Client(s) in Virtual Machine

Amirul Hakimi Bin Mohamad Nizarudin

Faculty of Computer Science in Multimedia Computing, UTHM, Parit Raja, Malaysia

amirulhakimi1110@gmail.com

Ahmad Arif Bin Ahmad Nasir

Faculty of Computer Science in Multimedia Computing, UTHM, Parit Raja, Malaysia

ariftorepride10@gmail.com

Muhamad Amirul Aiman Bin Sulehan

Faculty of Computer Science in Multimedia Computing, UTHM, Parit Raja, Malaysia

mhamirulaiman97@gmail.com

Abstract

Virtual Machine technology in this era plays a crucial role in modern Operating System

environments by enabling security, flexibility and efficiency resource utilization. This study

presents the implementation of scripting programming and simple messaging server and client(s)

using a virtual machine based on Kali Linux. The project is divided into two main components:

automated file backup and cleanup using Bash scripting, and simple client-server communication

using the netcat tool. The objective of this research is to demonstrate practical operating system

concepts such as automation, scheduling, file system management, and basic networking. The

results show that Bash scripting can effectively automate routine administrative tasks, while netcat

provides a lightweight and powerful mechanism for understanding client-server communication.

This work contributes as a practical reference for students and beginners in operating system

implementation using virtual machines.

Keywords : Virtual Machine, Bash Scripting, Backup Automation, Netcat, Client-Server

Communication

mailto:amirulhakimi1110@gmail.com
mailto:ariftorepride10@gmail.com
mailto:mhamirulaiman97@gmail.com

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

80

Chapter 1 - Backup File

1.1 Introduction

In an operating system environment, file management and data protection are essential

administrative tasks. Manual backup processes are prone to human error and inefficiency.

Therefore, automation using shell scripting is a fundamental skill for system administrators. This

chapter focuses on the development of a Bash script that automates system information logging,

backup creation, and cleanup operations based on predefined conditions.

1.2 Conceptual Background

Bash scripting is a command-line scripting language commonly used in Unix-based operating

systems. It allows users to automate repetitive tasks through conditional statements, loops, and

system commands. In this project, conditional execution is applied to determine when backup and

cleanup operations should be performed.

The backup concept implemented follows a time-based condition, where backup files are

generated on specific days (Wednesday and Friday). Cleanup operations are scheduled on Saturday

with user confirmation to ensure data safety.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

81

Figure 1: Conceptual flow of backup and cleanup automation

(Login → System Information Logging → Backup Condition Check → Cleanup Condition

Check)

1.3 Research Methodology

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

82

The methodology for Chapter 1 follows these steps:

1. Requirement analysis based on the project specification.

2. Design of Bash scripts using conditional statements.

3. Implementation of system information logging.

4. Execution of backup and cleanup scripts.

5. Observation and documentation of outputs using screenshots.

Chapter 2 - Simple Messaging

2.1 Introduction

Networking is a core component of operating system functionality. Understanding basic client-

server communication is essential for system-level networking tasks. This chapter demonstrates a

simple messaging system using the netcat utility within a virtual machine environment.

2.2 Conceptual Background

The client-server model is a distributed application structure where one system (server) provides

services, and another system (client) requests those services. Netcat is a networking tool that

allows reading and writing data across network connections using TCP or UDP protocols.

In this project, netcat is used to simulate a simple text-based communication between two virtual

machines, reinforcing the understanding of port listening, connection establishment, and data

transmission.

2.3 Research Methodology

The methodology for Chapter 2 includes:

1. Configuration of two virtual machines as server and client.

2. Identification of IP address and port number.

3. Execution of netcat command on the server to listen for connections.

4. Execution of netcat command on the client to initiate communication.

5. Observation and recording of message exchange results.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

83

Chapter 3 - Flowchart

This chapter presents the overall flow of the system implementation.

Figure 2: Overall system flowchart

1. User login to system

2. Execution of system information script

3. Conditional backup execution

4. Conditional cleanup execution

5. Server initialization

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

84

6. Client connection

7. Message exchange

The flowchart provides a clear visualization of how scripting automation and messaging tasks are

integrated within the virtual machine environment.

Chapter 4 - Analysis and Development

4.1 Planning

The planning phase involved identifying the system requirements, selecting appropriate tools, and

defining execution conditions. Kali Linux was chosen as the guest operating system due to its

flexibility and strong command-line support. Bash scripting and netcat were selected as

lightweight and effective tools for achieving the project objectives.

4.2 Development

A. Usecase Diagram

The use case diagram represents interactions between the user and the system, including script

execution, backup creation, cleanup confirmation, server setup, and client messaging.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

85

Figure 3: Use Case Diagram for Project B

B. Class Diagram

Although the project is script-based, conceptual classes such as ScriptManager, BackupHandler,

and MessagingService are identified to illustrate logical separation of responsibilities.

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

86

Figure 4: Conceptual Class Diagram

C. Relational Database

A lightweight conceptual database relationship is proposed to log backup metadata and

communication logs for future scalability.

Figure 5: Conceptual Relational Database Diagram (Simple ERD)

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

87

4.3 Control

Control mechanisms are implemented through:

● User confirmation before file deletion

● Restricted port usage for messaging

● Manual termination of netcat sessions using CTRL+C

These controls ensure safe execution and prevent unintended system behavior.

Conclusion

This project successfully demonstrates the practical application of operating system concepts using

a virtual machine environment. Bash scripting proved effective for automating backup and cleanup

tasks, while netcat enabled a clear understanding of client-server communication. The structured

approach adopted in this study aligns with academic and practical requirements, making it suitable

for publication and educational reference. Future work may include scheduling using cron jobs,

secure communication using encryption, and integration with graphical monitoring tools.

References

1. Shotts, W. (2019). The Linux Command Line. No Starch Press, from

https://nostarch.com/tlcl2

2. Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems. Pearson, from

https://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P20000000

3295

3. Kali Linux Documentation. (2024), from

https://www.kali.org/docs/

4. Netcat Manual Page. (2024), from

https://linux.die.net/man/1/nc

Copyright: © 2024 authors. This is an open-access article distributed under the terms of the Creative

Commons Attribution-NonCommercial-ShareAlike 4.0 International License. which permits non-

commercial use, distribution, and reproduction in any medium, provided the original author and APJISDT

are credited.

DOI: https://doi.org/10.61973/apjisdt.v10124.5

http://www.pearson.com/en-us/subject-catalog/p/modern-operating-systems/P20000000
http://www.kali.org/docs/
https://linux.die.net/man/1/nc

Asia Pacific Journal of Information System and Digital Transformation

2024 , Vol 1 No 01, Research Article

88

